MA/CSSE 474 Day 13 Summary

- 1. Recap: For Every DFSM, there is an equivalent regular expression:
 - a. Number the states q_1, \ldots, q_n .
 - b. Define \mathbf{R}_{ijk} to be the set of all strings $x \in \Sigma^*$ such that $(q_i,x) \mid_{-M^*} (q_j, \varepsilon)$, and if $(q_i,y) \mid_{-M^*} (q_\ell, \varepsilon)$, for any prefix y of x (except $y=\varepsilon$ and y=x), then $\ell \le k$
 - c. That is, R_{ijk} is the set of all strings that take us from q_i to q_j without passing through any intermediate states numbered higher than k.
 - i. In this case, "passing through" means both entering and leaving.
 - ii. Note that either i or j (or both) may be greater than k.

2. Formulas for R_{ijk}:

- a. Base cases (k = 0):
 - i. If $i \neq j$, $R_{ij0} = \{a \in \Sigma : \delta(q_i, a) = q_j\}$
 - ii. If i = j, $R_{ii0} = \{a \in \Sigma : \delta(q_i, a) = q_i\} \cup \{\epsilon\}$
- b. Recursive case (k > 0):

 $R_{ijk} \text{ is } R_{ij(k\text{-}1)} \cup R_{ik(k\text{-}1)}(R_{kk(k\text{-}1)}) * R_{kj(k\text{-}1)}$

3. In the **DFSMtoRegExp** example machine M from the slides, show how to get

r ₂₂₁	An Example Start $\longrightarrow (q_1) \xrightarrow[0]{0} \xrightarrow[0]{0} \xrightarrow[0]{1} \xrightarrow[0]{0} \xrightarrow[0]{0}$			
r ₁₃₂		k=0	k=1	k=2
	r _{11k}	3	З	(00)*
	r _{12k}	0	0	0(00)*
r ₁₂₃	r _{13k}	1	1	0*1
	r _{21k}	0	0	0(00)*
	r _{22k}	3	$\epsilon \cup 00$	(00)*
	r _{23k}	1	$1 \cup 01$	0*1
	r _{31k}	Ø	Ø	(0 \cup 1)(00)*0
r ₁₃₃	r _{32k}	$0 \cup 1$	$0 \cup 1$	(0 \cup 1)(00)*
	r _{33k}	3	3	ε ∪(0 ∪ 1)0*1

A regular expression r such that L(R) = L(M)

- 4. Many programming languages include regular-expression processing. Examples we will look at are from Perl. Most other programming languages have very similar notation.
 - a. The number of operators is extended significantly.
 - b. The addition of variables enables the recognition of some languages that are *not* regular.
 - c. Examples:
 - i. $b[A-Za-z0-9_{-}]+@[A-Za-z0-9_{-}]+(.[A-Za-z]+){1,4}b$
 - ii. ^([ab]*)\1\$
 - iii. $b([A-Za-z]+)\s+\1\b$
 - iv. $t = s/b([A-Za-z]+)\s+1b/1/g;$
- 5. *Rich* pages 150-151 has a list of rules for simplifying REs, but you can also use "what language is this?".
- 6. The number of languages over any nonempty alphabet Σ is uncountable.
 - a. Suppose we could enumerate all languages over $\Sigma = \{a\}$ as L_0 , L_1 , ...
 - b. Consider $L_d = \{a^i : i \ge 0 \text{ and } a^i \notin L_i\}$. Is there a j such that $L_d = L_j$?

- 7. The number of regular languages over any nonempty alphabet Σ is countable. How do we know?
- 8. Are there more regular languages or non-regular ones?
- 9. Finite languages are regular, but not necessarily tractable.
- 10. What are the approaches that we have seen so far for showing that a language is/isn't regular? is: is not:

Closure properties of regular languages: closed under union, concatenation, Kleene star, complement, difference, reverse, letter substitution (a function that maps each letter in Σ to a string in Σ).

11. In the homework you showed closure under intersection by construction. We can also do it using some other closure properties and DeMorgan's laws:

Using closure backwards: If $L_1 \cap L_2$ is regular, what can we say about L_1 and L_2 ?

If $L_1 \ L_2$ is regular, what can we say about L_1 and L_2 ?

12. Showing that a language is not regular.

- a. All non-regular languages are infinite.
- b. Where does "infiniteness" come from in a regular language?
 - i. Regular expression approach:
 - ii. DFSM approach:
- c. If a DFSM has k states and a string whose length is at least k ...
- d. This is the basis for the "pumping theorem" (also known as the "pumping lemma") for regular languages.
- 13. Pumping theorem: **Informally**: If *L* is regular, then every long string in *L* is "infinitely pumpable (in and out)".

Formally, if L is regular, ther	1	The contrapositive form:
$\exists k \geq 1$ such that		(
$(\forall \text{ strings } w \in L,$		
$(w \ge k \rightarrow$		
(∃ <i>x, y, z</i> (w	= <i>xyz</i> ,	
	$ xy \leq k$,	
	$y \neq \varepsilon$, and	
	$\forall q \ge 0 \ (xy^q z \text{ is in } L))))$	
)
14. Example: $\{a^n b^n : n \ge 0\}$		
		, ,
		\rightarrow L is not regular