MA/CSSE 474 Day 11 Summary

Announcements (more may be added on-line after this is printed):

- 1. **Regular expressions.** A way of describing languages in a "by example" way. Each regular expression over alphabet Σ defines language over Σ . We will prove (tomorrow?) that every language so-defined is regular.
 - a. The alphabet of "regular expressions over Σ " is $\Sigma \cup \{\emptyset, \varepsilon, \}, (, \cup, *, *, \}$.
 - b. If r is a reg. exp. (RE), then L(r), *the language denoted by r*, is defined recursively:

RE r	Language L(r) defined by r
Ø	Ø
3	{ ɛ }
a (a symbol from Σ)	{ a }
$\alpha\beta$ (α and β are REs)	L(α)L(β) (concatenation)
α∪β	$L(lpha) \cup L(eta)$
α*	L(α)*
α+	L(α)*
(α)	L(α)

c. + and ϵ are very convenient REs, but can be defined in terms of the other ones (syntactic sugar).

2. Precedence of operators: (1) * and +, (2) concatenation, (3) union. Use parentheses as needed to override.

3. Examples:

- a. $L = \{w \in \{a, b\}^*: |w| \text{ is even}\}$
- b. L = {w $\in \{0, 1\}^*$: w is a binary representation of a positive multiple of 4}
- c. $L = \{w \in \{a, b\}^*: w \text{ contains an odd number of } a's\}$
- d. $L = \{w \in \{a, b\}^*: \text{ there is no more than one b in } w\}$
- e. $L = \{w \in \{a, b\}^* : no two consecutive letters in w are the same\}$
- f. $a^* \cup b^* \neq (a \cup b)^*$
- g. $(ab)^* \neq a^*b^*$
- h. L((aa*) $\cup \varepsilon$) =
- i. L($(a \cup \varepsilon)^*$) =
- j. $L_1 = \{w \in \{a, b\}^* : every a is immediately followed a b\}$
- k. $L_2 = \{w \in \{a, b\}^* : every a has a matching b somewhere\}$
- 4. Kleene's Theorem: Finite state machines and regular expressions define the same class of languages.a. How we will show it:
 - i. If L = L(r) for some RE r, then L=L(M) for some NDFSM M. [fairly easy]
 - ii. If L=L(M) for some DFSM M, then L = L(r) for some RE r. [a bit more complicated]

- 5. For Every Regular Expression there is a Corresponding NDFSM. Show it by construction.
 - a. Ø:
 - b. ε
 - c. A single element c of Σ :
 - d. Union

e. Concatenation

f. Kleene Star

- 6. For Every DFSM, there is an equivalent regular expression (different algorithm than the textbook's):
 - a. Number the states $q_1, ..., q_n$.
 - b. Define $\boldsymbol{\mathsf{R}}_{ijk}$ to be the set of all strings $x\in\Sigma^*\,$ such that
 - $(q_i,x) \mid -_M^* (q_j, \epsilon)$, and
 - if (q_i,y) $\mid_{^-M} ^*$ (q_{\ell}, \epsilon), for any prefix y of x $\$ (except y= ϵ and y=x), then $\ell \leq k$
 - c. That is, R_{ijk} is the set of all strings that take us from q_i to q_j without passing through any intermediate states numbered higher than k.
 - i. In this case, "passing through" means both entering and leaving.
 - ii. Note that either i or j (or both) may be greater than k.

