Announcements (more may be added on-line after this is printed):

1. Regular expressions. A way of describing languages in a "by example" way. Each regular expression over alphabet Σ defines language over Σ. We will prove (tomorrow?) that every language so-defined is regular.
a. The alphabet of "regular expressions over Σ " is $\Sigma \cup\{\varnothing, \varepsilon),,\left(, \cup,{ }^{*},{ }^{+},\right\}$.
b. If r is a reg. \exp. (RE), then $L(r)$, the language denoted by r, is defined recursively:

RE \mathbf{r}	Language $\mathbf{L}(\mathbf{r})$ defined by \mathbf{r}
\emptyset	\emptyset
ε	$\{\varepsilon\}$
$\mathrm{a}($ a symbol from $\Sigma)$	$\{\mathrm{a}\}$
$\alpha \beta$ (α and β are REs)	$\mathrm{L}(\alpha) \mathrm{L}(\beta) \quad($ concatenation $)$
$\alpha \cup \beta$	$\mathrm{L}(\alpha) \cup \mathrm{L}(\beta)$
α^{*}	$\mathrm{~L}(\alpha)^{*}$
α^{+}	$\mathrm{L}(\alpha)^{+}$
(α)	$\mathrm{L}(\alpha)$

c. $\quad{ }^{+}$and ε are very convenient REs, but can be defined in terms of the other ones (syntactic sugar).
2. Precedence of operators: (1) ${ }^{*}$ and ${ }^{+}$, (2) concatenation, (3) union. Use parentheses as needed to override.
3. Examples:
a. $L=\left\{w \in\{a, b\}^{*}:|w|\right.$ is even $\}$
b. $L=\left\{w \in\{0,1\}^{*}: w\right.$ is a binary representation of a positive multiple of 4$\}$
c. $L=\left\{w \in\{a, b\}^{*}: w\right.$ contains an odd number of $\left.a \prime s\right\}$
d. $L=\left\{w \in\{a, b\}^{*}\right.$: there is no more than one b in $\left.w\right\}$
e. $L=\left\{w \in\{a, b\}^{*}:\right.$ no two consecutive letters in w are the same $\}$
f. $\quad a^{*} \cup b^{*} \neq(a \cup b)^{*}$
g. $(a b)^{*} \neq a^{*} b^{*}$
h. $L\left(\left(a^{*}\right) \cup \varepsilon\right)=$
i. $\quad L\left((a \cup \varepsilon)^{*}\right)=$
j. $\quad L_{1}=\left\{w \in\{a, b\}^{*}:\right.$ every a is immediately followed $\left.a \mathrm{~b}\right\}$
k. $L_{2}=\left\{w \in\{a, b\}^{*}\right.$: every a has a matching b somewhere $\}$
4. Kleene's Theorem: Finite state machines and regular expressions define the same class of languages.
a. How we will show it:
i. If $L=L(r)$ for some RE r, then $L=L(M)$ for some NDFSM M. [fairly easy]
ii. If $L=L(M)$ for some $D F S M M$, then $L=L(r)$ for some RE r. [a bit more complicated]
5. For Every Regular Expression there is a Corresponding NDFSM. Show it by construction.
a. $\quad \varnothing$:
b. ε
c. A single element c of Σ :
d. Union
e. Concatenation
f. Kleene Star
6. For Every DFSM, there is an equivalent regular expression (different algorithm than the textbook's):
a. Number the states q_{1}, \ldots, q_{n}.
b. Define $\mathbf{R}_{\mathrm{ijk}}$ to be the set of all strings $x \in \Sigma^{*}$ such that
$\left(q_{i}, x\right) \mid-m^{*}\left(q_{j}, \varepsilon\right)$, and
if $\left(q_{i}, y\right) \mid-m^{*}\left(q_{\ell}, \varepsilon\right)$, for any prefix y of x (except $y=\varepsilon$ and $y=x$), then $\ell \leq k$
c. That is, $R_{i j k}$ is the set of all strings that take us from q_{i} to q_{j} without passing through any intermediate states numbered higher than k.
i. In this case, "passing through" means both entering and leaving.
ii. Note that either i or j (or both) may be greater than k .

