MA/CSSE 474 Day 11 Summary
Announcements (more may be added on-line after this is printed):
1. Regular expressions. A way of describing languages in a "by example" way. Each regular expression over alphabet defines language over . We will prove (tomorrow?) that every language so-defined is regular.
a. The alphabet of "regular expressions over " is ∪ {∅, ε,), (, ∪, *, ⁺ , }.
b. If r is a reg. exp. (RE), then L(r), the language denoted by r, is defined recursively:
	RE r
	Language L(r) defined by r

	∅
	∅

	ε
	{ ε }

	a (a symbol from Σ)
	{ a }

	αβ (α and β are REs)
	L(α)L(β) (concatenation)

	α∪β
	L(α) L(β)

	α*
	L(α)*

	α⁺
	L(α)⁺

	(α)
	L(α)

c. ⁺ and ε are very convenient REs, but can be defined in terms of the other ones (syntactic sugar).

2. Precedence of operators: (1) * and ⁺, (2) concatenation, (3) union. Use parentheses as needed to override.
3. Examples:
a. L = {w {a, b}*: |w| is even}
b. L = {w {0, 1}*: w is a binary representation of a positive multiple of 4}
c. L = {w {a, b}*: w contains an odd number of a’s}
d. L = {w {a, b}*: there is no more than one b in w}
e. L = {w {a, b}* : no two consecutive letters in w are the same}
f. a* b* (a b)*
g. (ab)* a*b*
h. L ((aa*)) =
i. L ((a)*) =
j. L1 = {w {a, b}* : every a is immediately followed a b}
k. L2 = {w {a, b}* : every a has a matching b somewhere}

4. Kleene's Theorem: Finite state machines and regular expressions define the same class of languages.
a. How we will show it:
i. If L = L(r) for some RE r, then L=L(M) for some NDFSM M. [fairly easy]
ii. If L=L(M) for some DFSM M, then L = L(r) for some RE r. [a bit more complicated]

5. For Every Regular Expression there is a Corresponding NDFSM. Show it by construction.
a. ∅:

b. ε

c. A single element c of :

d. Union

e. Concatenation

f. Kleene Star

6. For Every DFSM, there is an equivalent regular expression (different algorithm than the textbook's):
a. Number the states q1, …, qn.
b. Define Rijk to be the set of all strings x * such that
(qi,x) |-M* (qj,), and
if (qi,y) |-M* (q𝓁,), for any prefix y of x (except y= and y=x), then 𝓁 k
c. [image:]That is, Rijk is the set of all strings that take us from qi to qj without passing through any intermediate states numbered higher than k.
i. In this case, "passing through"
means both entering and leaving.
ii. Note that either i or j (or both)
may be greater than k.
[bookmark: _GoBack]
image1.png

