1. Myhill-Nerode Theorem: A language is regular iff the number of equivalence classes of \approx_{L} is finite.
a. Proof: Show the two directions of the implication:
b. L regular \rightarrow the number of equivalence classes of \approx is finite: If L is regular, then
c. The number of equivalence classes of $\approx \underset{L}{ }$ is finite $\rightarrow L$ regular: If the cardinality of \approx_{L} is finite, then

NDFSM->FSM algorithm proof.

2. Statement: From any NDFSM $M=(K, \Sigma, \Delta, s$, A), ndfsmtodfsm constructs a DFSM
$M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$, which is equivalent to M.
a. $\quad K^{\prime} \subseteq \mathcal{P}(K)$ (power set of K)
b. $s^{\prime}=e p s(s)$
c. $A^{\prime}=\{Q \subseteq K: Q \cap A \neq \varnothing\}$
d. $\delta^{\prime}(Q, a)=\cup\{\operatorname{eps}(p): p \in K$ and $(q, a, p) \in \Delta$ for some $q \in Q\}$
3. \mathbf{M}^{\prime} is deterministic. δ^{\prime} is defined for each reachable state of K^{\prime} and for each alphabet symbol. And for each state q and symbol a, step 3.3 assigns only one value to $\delta^{\prime}(q, a)$.
```
The Algorithm ndfsmtodfsm
ndfsmtodfsm(M: NDFSM) =
    1. For each state q in K}\mp@subsup{K}{M}{}\mathrm{ do:
            1.1 Compute eps(q).
    2. s'=eps(s)
    3. Compute \delta':
        3.1 active-states={s}.
        3.2 \delta' = \varnothing.
        3.3 While there exists some element Q of active-states for
        which \delta' has not yet been computed do:
                        For each character c in \Sigma}\mp@subsup{\Sigma}{M}{}\mathrm{ do:
                            new-state = }\varnothing\mathrm{ .
                            For each state q in Q do:
                            For each state p such that (q,c,p)\in\Delta do:
                                    new-state = new-state }\cup\operatorname{eps}(p)
                            Add the transition (q, c, new-state) to \delta'.
                            If new-state & active-states then insert it.
4. K' = active-states.
5. A' ={Q\inK:Q\capA\not=\varnothing}.
```

4. The hard part is showing that $L\left(M^{\prime}\right)=L(M)$.
5. A useful Lemma: (If this is all we get to today, it's okay, because this is good practice for the exam).
a. Let w be any string in Σ^{*}, let p and q be any states in K, and let P be any state in K^{\prime}. Then: $(q, w) \mid-m^{*}(p, \varepsilon)$ iff $\left((e p s(q), w) \mid-m^{\prime *}(P, \varepsilon)\right.$ where $\left.p \in P\right)$.
b. We will only need this lemma for the case $q=s$, but the more general statement is easier to prove by induction.
c. Informal restatement of the lemma: If the original NDFSM M starts in state q and, after reading the string w, can land in state p (along at least one of its paths), then the new DFSM M' must behave as follows:

The only-if part implies:

6. The lemma: $(q, w) \mid-m^{*}(p, \varepsilon)$ iff $\left((\operatorname{eps}(q), w) \mid-m^{\prime *}(P, \varepsilon)\right.$ and $\left.p \in P\right)$ Proof: induction on $|w|$.
7. Base case: $w=\varepsilon$
a. if part: $\quad(e p s(q), \varepsilon)\left|-м^{\prime *}(P, \varepsilon) \wedge p \in P \quad \rightarrow \quad(q, \varepsilon)\right|-M^{*}(p, \varepsilon)$
b. only if part: $\quad(q, \varepsilon)\left|-м^{*}(p, \varepsilon) \rightarrow(e p s(q), \varepsilon)\right|-m^{\prime *}(P, \varepsilon)$ and $p \in P$
8. Induction step: Let w have length $k+1$. Then $w=z c$ where $z \in \Sigma^{*}$ has length k, and $c \in \Sigma$.
a. Induction assumption. The lemma is true for z .
b. To show: The lemma is true for w.
9. This boils down to showing:
$(q, z c)\left|-m^{*}\left(s_{i}, c\right)\right|-m^{*}(p, \varepsilon)$ iff $(e p s(q), z c)\left|-m^{*}(Q, x)\right|-m^{\prime}(P, \varepsilon)$ and $p \in P$
I.e. Assume that M and M^{\prime} "behave identically" for the first k input characters: show for $\mathrm{k}+1$
a. If part: $(e p s(q), z c)\left|-m^{*}(Q, c)\right|-m^{\prime}(P, \varepsilon)$ and $p \in P \quad \rightarrow \quad(q, z c)\left|-m^{*}\left(s_{i}, c\right)\right|-m^{*}(p, \varepsilon)$
b. Only if part: $\quad(q, z c)\left|-m^{*}(s, c)\right|-m^{*}(p, \varepsilon) \rightarrow(e p s(q), z c)\left|-m^{*}(Q, c)\right|-m^{\prime}(P, \varepsilon)$ and $p \in P$
10. Using the lemma to prove the theorem is straightforward.

Recall the theorem: $\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\mathrm{L}(\mathrm{M})$. There are two things to show (details are on the last two slides, in case there is not time to write them down before class ends)
a. $\mathrm{L}(\mathrm{M}) \subseteq \mathrm{L}\left(\mathrm{M}^{\prime}\right)$. Suppose that $w \in L(M)$ (original machine M accepts w):
b. $L\left(M^{\prime}\right) \subseteq \mathrm{L}(\mathrm{M})$. Prove the contrapositive. Suppose that $w \notin L(M)$ (i.e. the original NDFSM does not accept w):

