1. Example: From the NDFSM on the slides, produce a DFSM based on "state sets"
2. Theme for today: Given a DFSM. Among all DFSMs M^{\prime} that are equivalent to M (in the sense that $L(M)=L(M ')$, there is a minimal number of states that M^{\prime} can have. Can we find that minimal number and an equivalent machine that has that many states? If so, is it unique (except for renaming of states)?
3. First step: remove unreachable states. Easier to find the reachable states and remove the others. Algorithm:
4. Remove redundant states. This is trickier. The rest of this document addresses it.
5. A bridge to finding equivalent states: equivalent strings.
6. Given a language L, two strings w and x in $\Sigma_{L} *$ are indistinguishable with respect to L, written $w \approx\llcorner x$, iff (English statement):
(first-order logic statement):
a. $\approx_{L} \mathrm{~s}$ an equivalence relation.
b. The equivalence classes of $\approx_{\llcorner }$partition Σ^{*}.
7. If $L=\left\{w \in\{a, b\}^{*}\right.$: every a is immediately followed $\left.b y b\right\}$, what are the equivalence classes of \approx_{L} ?
8. If $L=\left\{w \in \Sigma^{*}:|w|\right.$ is even $\}$, what are the equivalence classes of $\approx_{\llcorner }$?
9. If $L=\{a a\}\{b\}^{*}\{a\}$, what are the equivalence classes of \approx_{L} ? (Do this one for practice later)
10. $L=\left\{w \in\{a, b\}^{*}\right.$: no two adjacent chars in w are the same $\}$: multiple equivalence classes may be subsets of L.
11. If $L=A^{n} B^{n}=\left\{a^{n} b^{n}: n \geq 0\right\}$, what are the equivalence classes of \approx_{L} ?
12. If L is regular, the number of equivalence classes of is a lower bound on the number of states in any DFSM M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$.
13. Theorem: Let L be a regular language over some alphabet Σ. Then there is a DFSM M that accepts L and that has precisely n states where n is the number of equivalence classes of \approx_{L}. Any other FSM that accepts L must either have more states than M or it must be equivalent to M except for state names.
14. Construction: $M=(K, \Sigma, \delta, s, A)$, where:

- K contains n states, one for each equivalence class of \approx_{L}.
- $s=[\varepsilon]$, the equivalence class of ε under $\approx_{\llcorner }$.
- $A=\{[x]: x \in L\}$.
- $\delta([x], a)=[x a]$. In other words, if M is in the state that contains some string x, then, after reading the next symbol, a, it will be in the state that contains $x a$.

15. Three things to show:
a. K is finite.
b. δ is a function. i.e., δ is defined for all (state, input) pairs and produces, for each pair, a unique value.
c. $\quad L=L(M)$. To prove this, we must first show that $\forall s, t \in \Sigma^{*}\left(([\varepsilon], s t) \vdash_{M}^{*}([s], t)\right)$. We do this by induction on $|s|$. The base case is trivial.
16. Induction step. Assume that the claim is true for strings of length k. What can we say when $|s|=k+1$? Since $|s| \geq 1$, we know that $s=y c$, where $y \in \Sigma^{*}$ and $c \in \Sigma$.
