MA/CSSE 474 Day 05 Summary

1. Constructing one machine based on another machine. Consider the multiplication language:

INTEGERPROD $=\left\{w\right.$ of the form: <int ${ }_{1}>\mathbf{x}<$ int $_{2}>=<$ int $_{3}>$, where each <int ${ }_{n}>$ is an
encoding (decimal in this case) of an integer, and $\left.\boldsymbol{i n t}_{3}==\boldsymbol{i n t}_{1} * \boldsymbol{i n t}_{\mathbf{2}}\right\}$
Given a multiplication procedure for integers, we can build a procedure that recognizes the INTEGERPROD language:
This is easy; we did it on Friday.
Suppose we have a machine $M(x, y)$ that multiplies two integers.
Given a string w, if it is not in the form <int1>*<int2>=<int3>, reject. If it is in that form,
$X=$ convertTolnt(<int1>)
$\mathrm{Y}=$ convertToInt(<int2>)
Z = convertTolnt(<int3>)
If $z=M(x, y)$ then accept. Else reject.

Given function $R(w)$ that recognizes INTEGERPROD, build function Mult (m, n) that computes the product of two integers:
2. A configuration of a DFSM M is an element of $K \times \Sigma^{*}$. Contains all info needed to complete the computation. Initial configuration of M : $\left(s_{M}, w\right)$, Where s_{M} is the start state of M.
3. The yields-in-one-step relation: $\mid-м$:
$(q, w) \mid-м\left(q^{\prime}, w^{\prime}\right)$ iff

- $w=a$ w' for some symbol $a \in \Sigma$, and
- $\delta(q, a)=q^{\prime}$

4. The yields-in-zero-or-more-steps relation: |-м* $\mid-м^{*}$ is the reflexive, transitive closure of $\mid-м$.
5. A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε), for some state $q \in K_{M}$,

Recap - Definition of a DFSM

$M=(K, \Sigma, \delta, s, A)$, where:
K is a finite set of states
Σ is a (finite) alphabet
$s \in K$ is the initial state (a.k.a. start state)
$A \subseteq K$ is the set of accepting states
$\delta:(K \times \Sigma) \rightarrow K$ is the transition function

Sometimes we will put an M subscript on K, Σ, δ, s, A (for example, \mathbf{s}_{M}), to indicate that this component part of machine M.

- $\forall \mathrm{i} \in\{0,1, \ldots, \mathrm{n}-1\}\left(C_{\mathrm{i}} \mid-м C_{\mathrm{i}+1}\right)$

6. A DFSM M accepts a string w iff $\left(s_{M}, w\right) \mid-m^{*}(q, \varepsilon)$, for some $q \in A_{M}$ rejects w iff $\left(s_{M}, w\right) \mid-m^{*}(q, \varepsilon)$, for some $q \notin A_{M}$. The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M. A language is regular if it is $L(M)$ for dome DFSM M.
7. Theorem: Every DFSM M, in configuration (q, w), halts after $|w|$ steps.

DFSM exercises:

8. $L=\left\{w \in\{0,1\}^{*}: w\right.$ has odd parity $\}$. I.e. an odd number of 1 's.
9. $L=\left\{w \in\{a, b\}^{*}\right.$: no two consecutive characters in w are the same $\}$.
10. $L=\left\{w \in\{a, b\}^{*}: \#_{a}(w)>=\#_{b}(w)\right\}$.
11. $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \forall \mathrm{x}, \mathrm{y} \in\{\mathrm{a}, \mathrm{b}\}^{*}\left(\mathrm{w}=\mathrm{xy} \rightarrow\left|\#_{\mathrm{a}}(\mathrm{x})-\#_{\mathrm{b}}(\mathrm{x})\right|<=2\right)\right\} \quad$ Vertical bars mean "absolute value" here.
12. DFSM programming techniques
a. States remember info relevant to the goal of the machine (e.g., odd/even).
b. Feel free to label states by "everything from Σ except ..."
c. Can make a DFSM for the negation of the desired condition, then \qquad .
d. A DFSM for the "missing letter language" is difficult to construct! Try it.
13. Nondeterminism. Machine may have "transition choices".
a. If one choice leads to acceptance, accept
b. Else if all choices lead to halting and rejecting, reject
c. Else run forever
14. Why is nondeterminism necessary for any PDA that accepts PalEven?
