MA/CSSE 474 Day 05 Summary

1. Constructing one machine based on another machine. Consider the multiplication language:

INTEGERPROD = {*w* of the form: *<int*₁*>x<int*₂*>=<int*₃*>*, where each *<int*_n*>* is an encoding (decimal in this case) of an integer, and *int*₃ *== int*₁ ** int*₂}

Given a multiplication procedure for integers, we can build a procedure that recognizes the INTEGERPROD language: **This is easy; we did it on Friday.**

Suppose we have a machine M(x,y) that multiplies two integers. Given a string w, if it is not in the form <int1>*<int2>=<int3>, reject. If it is in that form, X = convertToInt(<int1>) Y = convertToInt(<int2>) Z = convertToInt(<int3>) If z = M(x,y) then accept. Else reject.

Given function R(w) that recognizes INTEGERPROD, build function Mult(m,n) that computes the product of two integers:

- 2. A configuration of a DFSM M is an element of $K \times \Sigma^*$. Contains all info needed to complete the computation. Initial configuration of M: (s_M , w), Where s_M is the start state of M.
- 3. The yields-in-one-step relation: $|-_M$: (q, w) $|-_M$ (q', w') iff
 - w = a w' for some symbol $a \in \Sigma$, and • $\delta(q, a) = q'$
- 4. The *yields-in-zero-or-more-steps* relation: $|_{-M}^*$ $|_{-M}^*$ is the reflexive, transitive closure of $|_{-M}$.
- 5. A *computation* by *M* is a finite sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that:
 - C₀ is an initial configuration,
 - C_n is of the form (q, ε) , for some state $q \in K_M$,
 - $\forall i \in \{0, 1, ..., n-1\} (C_i \mid -_M C_{i+1})$

Recap - Definition of a DFSM

 $M = (K, \Sigma, \delta, s, A)$, where:

The D is for Deterministic

K is a finite set of states

 Σ is a (finite) *alphabet*

 $s \in K$ is the *initial state* (a.k.a. start state)

 $A \subseteq K$ is the set of *accepting states*

δ: (*K* × Σ) → *K* is the *transition function*

Sometimes we will put an M subscript on K, Σ , δ , s, cA (for example, \underline{s}_M), to indicate that this component is part of machine M.

- 6. A DFSM *M* accepts a string *w* iff $(s_M, w) |_{-M}^* (q, \varepsilon)$, for some $q \in A_M$ *rejects w* iff $(s_M, w) |_{-M}^* (q, \varepsilon)$, for some $q \notin A_M$. The *language accepted by M*, denoted *L*(*M*), is the set of all strings accepted by *M*. A language is *regular* if it is L(M) for dome DFSM M.
- 7. **Theorem:** Every DFSM *M*, in configuration (q, w), halts after |w| steps.

DFSM exercises:

- 8. $L = \{w \in \{0, 1\}^* : w \text{ has odd parity}\}$. I.e. an odd number of 1's.
- 9. $L = \{w \in \{a, b\}^* : no two consecutive characters in w are the same\}.$

10. $L = \{w \in \{a, b\}^* : \#_a(w) \ge \#_b(w) \}$.

11. $L = \{w \in \{a, b\}^* : \forall x, y \in \{a, b\}^* (w=xy \rightarrow | \#_a(x) - \#_b(x)| \le 2\}$ Vertical bars mean "absolute value" here.

12. DFSM programming techniques

- a. States remember info relevant to the goal of the machine (e.g., odd/even).
- b. Feel free to label states by "everything from Σ except ..."
- c. Can make a DFSM for the negation of the desired condition, then ______
- d. A DFSM for the "missing letter language" is difficult to construct! Try it.

13. Nondeterminism. Machine may have "transition choices".

- a. If one choice leads to acceptance, accept
- b. Else if all choices lead to halting and rejecting, reject
- c. Else run forever

14. Why is nondeterminism necessary for any PDA that accepts PalEven?