MA/CSSE 474 Day 04 Summary

1. Show that \equiv_3 is an equivalence relation. (a \equiv_3 b iff b-a = 3k for some integer k). reflexive:

symmetric:

transitive:

- 2. Can a language be uncountable? Is the set of languages over a specific alphabet uncountable?
- 3. Questions about maxstring function: maxstring(AⁿBⁿ) = maxstring({a}*) = (later, to check your understanding): maxstring({bⁿa: n≥0}) = Let INF be the set of infinite languages. Let FIN be the set of finite languages. Are the language classes FIN and INF closed under maxstring?
- Questions about chop function: What is chop(AⁿBⁿ)? What is chop(AⁿBⁿCⁿ)? Are FIN and INF closed under chop?
- Questions about firstchars function: What is firstchars(AⁿBⁿ)? What is firstchars({a, b}*)? Are FIN and INF closed under firstchars?
- 6. A decision problem is a problem whose answer is ______.
- 7. What does <x> mean?
- 8. Some decision problems:
 - a. Consecutive pair of d. Primality testing g. Sorting as decision factors e. Graph connectivity problem
 b. Halting problem f. Multiplication as
 c. Web pattern decision problem matching

<x, y>?

9. Constructing one machine based on another machine

Consider the multiplication language:

INTEGERPROD = {*w* of the form *<integer*₁>*x<integer*₂>*=<integer*₃>, where:

<integer_n> is any well-formed integer representation and integer_3 = integer_1 * integer_2}
Given a multiplication procedure, we can build a language recognition procedure?

Given the language recognition procedure, we can build a multiplication procedure:

- 10. A configuration of a DFSM M is an element of $K \times \Sigma^*$. Contains all info needed to complete the computation. Initial configuration of M: (s_M , w), Where s_M is the start state of M.
- 11. The *yields-in-one-step* relation: |-_M :
 - $(q, w) \mid -_{M} (q', w')$ iff
 - w = a w' for some symbol $a \in \Sigma$, and

- 12. The *yields-in-zero-or-more-steps* relation: $|_{-M}^*$ | $-_{M}^*$ is the reflexive, transitive closure of $|_{-M}$.
- 13. A *computation* by *M* is a finite sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that:
 - C_0 is an initial configuration,
 - C_n is of the form (q, ε) , for some state $q \in K_M$,
 - $\forall i \in \{0, 1, ..., n-1\} (C_i \mid -_M C_{i+1})$

Recap - Definition of a DFSM

 $M = (K, \Sigma, \delta, s, A)$, where:

The D is for Deterministic

- K is a finite set of states Σ is a (finite) alphabet
- $s \in K$ is the *initial state* (a.k.a. start state)
- $A \subseteq K$ is the set of *accepting states*
- δ: (*K* × Σ) → *K* is the *transition function*

Sometimes we will put an M subscript on K, Σ , δ , s, c A (for example, \underline{s}_{M}), to indicate that this component is part of machine M.

14. A DFSM *M* accepts a string *w* iff $(s_M, w) \mid -M^* (q, \varepsilon)$, for some $q \in A_M$

rejects w iff $(s_M, w) |_{-M}^* (q, \varepsilon)$, for some $q \notin A_M$. The **language accepted by** M, denoted L(M), is the set of all strings accepted by M. A language is **regular** if it is L(M) for dome DFSM M.

15. *Theorem:* Every DFSM *M*, in configuration (q, w), halts after |w| steps.

16. $L = \{w \in \{0, 1\}^* : w \text{ has odd parity}\}$. I.e. an odd number of 1's.

17. $L = \{w \in \{a, b\}^* : no two consecutive characters are the same\}.$

18. $L = \{w \in \{a, b\}^* : \#_a(w) \ge \#_b(w) \}$.

19. $L = \{w \in \{a, b\}^* : \forall x, y \in \{a, b\}^* (w=xy \rightarrow |_{\#a}(w) - \#_b(w)| \le 2)\}$