MA/CSSE 474 Day 04 Summary

1. Show that \equiv_{3} is an equivalence relation. $\left(a \equiv_{3} b\right.$ iff $b-a=3 k$ for some integer $\left.k\right)$.
reflexive:
symmetric:
transitive:
2. Can a language be uncountable? Is the set of languages over a specific alphabet uncountable?
3. Questions about maxstring function:
$\operatorname{maxstring}\left(A^{n} B^{n}\right)=\quad \operatorname{maxstring}\left(\{a\}^{*}\right)=\quad$ (later, to check your understanding): maxstring $\left(\left\{b^{n} a: n \geq 0\right\}\right)=$
Let INF be the set of infinite languages. Let FIN be the set of finite languages.
Are the language classes FIN and INF closed under maxstring?
4. Questions about chop function:

What is chop $\left(\mathrm{A}^{n} \mathrm{~B}^{n}\right)$? What is chop $\left(\mathrm{A}^{n} \mathrm{~B}^{n} \mathrm{C}^{n}\right)$?
Are FIN and INF closed under chop?
5. Questions about firstchars function:

What is firstchars $\left(A^{n} B^{n}\right)$? What is firstchars(\{a, $\left.\left.b\right\}^{*}\right)$?
Are FIN and INF closed under firstchars?
6. A decision problem is a problem whose answer is \qquad -.
7. What does $<x>$ mean? $<x, y>$?
8. Some decision problems:
a. Consecutive pair of
d. Primality testing factors
e. Graph connectivity
g. Sorting as decision problem
b. Halting problem
f. Multiplication as
c. Web pattern matching decision problem
9. Constructing one machine based on another machine Consider the multiplication language:

INTEGERPROD $=\left\{w\right.$ of the form <integer ${ }_{1}>x<$ integer $_{2}>=<$ integer $_{3}>$, where:
<integer $_{n}>$ is any well-formed integer representation and integer ${ }_{3}=$ integer $_{1} *$ integer $_{2}$ \}
Given a multiplication procedure, we can build a language recognition procedure?

Given the language recognition procedure, we can build a multiplication procedure:
10. A configuration of a DFSM M is an element of $K \times \Sigma^{*}$. Contains all info needed to complete the computation. Initial configuration of M : $\left(s_{M}, w\right)$, Where s_{M} is the start state of M.
11. The yields-in-one-step relation: $\mid-м$:
(q, w) |-m (q^{\prime}, w^{\prime}) iff

- $w=a w^{\prime}$ for some symbol $a \in \Sigma$, and
- $\delta(q, a)=q^{\prime}$

12. The yields-in-zero-or-more-steps relation: |-м* $\mathrm{I}-\mathrm{m}^{*}$ is the reflexive, transitive closure of $\mid-м$.
13. A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε), for some state $q \in K_{M}$,
- $\forall \mathrm{i} \in\{0,1, \ldots, \mathrm{n}-1\}\left(C_{\mathrm{i}} \mid-m C_{i+1}\right)$

14. A DFSM M accepts a string w iff $\left(s_{M}, w\right) \mid-m^{*}(q, \varepsilon)$, for some $q \in A_{M}$ rejects w iff $\left(s_{M}, w\right) \mid-M^{*}(q, \varepsilon)$, for some $q \notin A_{M}$. The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M. A language is regular if it is $L(M)$ for dome DFSM M.
15. Theorem: Every DFSM M, in configuration (q, w), halts after $|w|$ steps.
16. $L=\left\{w \in\{0,1\}^{*}: w\right.$ has odd parity $\}$. I.e. an odd number of 1 's.
17. $L=\left\{w \in\{a, b\}^{*}\right.$: no two consecutive characters are the same $\}$.
18. $L=\left\{w \in\{a, b\}^{*}: \#_{a}(w)>=\#_{b}(w)\right\}$.
19. $L=\left\{w \in\{a, b\}^{*}: \forall x, y \in\{a, b\}^{*}\left(w=x y \rightarrow\left|\#_{\#}(w)-\#_{b}(w)\right|<=2\right)\right\}$
