MA/CSSE 474 Day 01 Summary

Main ideas from today:

- 1. Informal look at DFSMs (tennis scoring).
- 2. Recursive definition of *string* w:
 - a. $w = \varepsilon$ (empty string), or
 - b. w = ua, where u is a string and a is a single symbol.

3. DFSM (d_______ f______s_____ m_____) "physical model":

- **a.** A finite tape; each square contains an input symbol.
- **b.** A finite control that can be in any one of a fixed (finite) set of states.
- c. The machine reads an input symbol, changes state, then moves right, to read next symbol on the tape.
- d. After reading the entire input, the machine halts and either accepts or rejects the string.
- If Σ is a (finite) alphabet, Σ* is _____
- 5. Letters near the beginning of the English alphabet will usually stand for _______. Letters near the end of the alphabet will usually stand for _______.
- 6. The 5 parts of a DFSM definition:
 - а. К:_____
 - b. Σ: _____
 - c. $\delta: _ \times _ \rightarrow _$ _____ d. $s \in _$ _____
 - e. A⊆____

7. Two main ways we can represent the transition function:

_____ and _____

- 8. Sometimes we omit drawing the dead state and its transitions, to keep the diagram uncluttered.
- 9. JFLAP is _____
- 10. State diagram for $\{w \in \{0,1\}^* : w \text{ does not have two consecutive } 1's\}$:
- 11. Extended transition function (from $K \times \Sigma^*$ to $\,$ K) has a recursive, two-part definition:
 - a.
 - b.
- 12. If M is a DFSM, L(M) =

13. To prove that two sets S and T are equal, we must show ______ and _____.

14. The contrapositive of "if X then Y" is:_____

- 15. (Strong) mathematical induction: To prove property P(n) true for all integers $n \ge n_0$ (n_0 is often 0 or 1): a. Show that $P(n_0)$ is true.
 - b. Show that for any $k > n_0$, if p(j) is true for all j with $n_0 \le j < k$ (this is the IH), then P(k) is true.
- 16. Induction on the length of a string (or on the number of transitions in a machine or the length of a derivation) will be a very useful proof technique in this course. Use the back of this page for the class example.