MA/CSSE 474 Exam 2 Notation and Formulas page Name _____ (turn this in with your exam)

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ ; while a, b, c, d are individual alphabet symbols.

DFSM notation: $M = (K, \Sigma, \delta, s, A)$, where:

K is a finite set of *states*, Σ is a finite *alphabet*

 $s \in K$ is start state, $A \subseteq K$ is set of *accepting states*

 δ : (*K* × Σ) \rightarrow *K* is the *transition function*

Extend δ 's definition to δ : $(K \times \Sigma^*) \to K$ by the recursive definition $\delta(q, \varepsilon) = q$, $\delta(q, xa) = \delta(\delta(q, x), a)$

M accepts w iff $\delta(s, w) \in A$. $L(M) = \{w \in \Sigma^* : \delta(s, w) \in A\}$

Alternate notation:

(q, w) is a *configuration* of M. (current state, remaining input)

The *yields-in-one-step* relation: $|-_M$:

 $(q, w) \mid_{-M} (q', w')$ iff w = a w' for some symbol $a \in \Sigma$, and $\delta(q, a) = q'$

The *yields-in-zero-or-more-steps* relation: $|-_M^*|$ is the reflexive, transitive closure of $|-_M$.

A *computation* by *M* is a finite sequence of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε) , for some state $q \in K_M$,
- $\forall i \in \{0, 1, ..., n-1\} (C_i \mid -_M C_{i+1})$

M accepts wiff the state that is part of the last step in w is in A.

A language L is **regular** if L=L(M) for some DFSM M.

In an **NDFSM**, the function δ is replaced by the relation Δ : $\Delta \subseteq (K \times (\Sigma \cup \{\varepsilon\})) \times K$

```
ndfsmtodfsm(M: NDFSM) =
1. For each state q in K_M do:
       1.1 Compute eps(q).
2. s' = eps(s)
3. Compute δ':
       3.1 active-states = {s}.
       3.2 δ' = Ø.
       3.3 While there exists some element Q of active-states for
            which \delta' has not yet been computed do:
                  For each character c in \Sigma_M do:
                        new-state = \emptyset.
                         For each state q in Q do:
                             For each state p such that (q, c, p) \in \Delta do:
                                 new-state = new-state \cup eps(p).
                         Add the transition (q, c, new-state) to \delta'.
                         If new-state ∉ active-states then insert it.
4. K' = active-states.
5. A' = \{Q \in K : Q \cap A \neq \emptyset\}.
```

Some functions over languages: maxstring(L) = { $w \in L$: $\forall z \in \Sigma^* (z \neq \varepsilon \rightarrow wz \notin L)$ }. chop(L) = { $w : \exists x \in L (x = x_1 c x_2, x_1 \in \Sigma_L^*, x_2 \in \Sigma_L^*, c \in \Sigma_L, |x_1| = |x_2|, and w = x_1 x_2)$ }. firstchars(L) = { $w : \exists y \in L (y = cx \land c \in \Sigma_L \land x \in \Sigma_L^* \land w \in \{c\}^*)$ }.

Equivalent strings relative to a language: Given a language L, two strings w and x in Σ_L^* are *indistinguishable* with respect to L, written w $\approx_L x$, iff $\forall z \in \Sigma^*$ ($xz \in L$ iff $yz \in L$).

[x] is a notation for "the equivalence class that contains the string x".

The construction of a minimal-state DSFM based on \approx_L :

 $M = (K, \Sigma, \delta, s, A)$, where K contains n states, one for each equivalence class of \approx_L .

 $s = [\varepsilon]$, the equivalence class containing ε under \approx_L ,

 $A = \{ [x] : x \in L \},\$

 $\delta([x], a) = [xa].$

Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language. Any given element of the language will appear within a finite amount of time. It is allowed that some may appear multiple times.

Recognizer: Given a string s, recognizer halts and accepts s if s is in the language. If not, recognizer either halts and rejects s or keeps running forever. This is a **semidecision procedure**. If recognizer is guaranteed to always halt and (accept or reject) no matter what string it is given as input, it is a **decision procedure**.

The **regular expressions** over an alphabet Σ are the strings that can be obtained as follows:

- 1. \emptyset is a regular expression.
- 2. ε is a regular expression.
- 3. Every element of Σ is a regular expression.
- 4. If α , β are regular expressions, then so is $\alpha\beta$.
- 5. If α , β are regular expressions, then so is $\alpha \cup \beta$.
- 6. If α is a regular expression, then so is α^* .
- 7. α is a regular expression, then so is α^+ .
- 8. If α is a regular expression, then so is (α).

Reg. exp. operator precedence (High to Low): parenthesized expressions, * and ⁺, concatenation, union

Functions on languages:

firstchars(*L*) = {*w* : $\exists y \in L$ (*y* = *cx*, *c* $\in \Sigma_L$, *x* $\in \Sigma_L^*$, and *w* $\in c^*$)} *chop*(*L*) = {*w* : $\exists x \in L$ (*x* = *x*₁*cx*₂, *x*₁ $\in \Sigma_L^*$, *x*₂ $\in \Sigma_L^*$, *c* $\in \Sigma_L$ |*x*₁| = |*x*₂|, and *w* = *x*₁*x*₂)} *maxstring*(*L*) = {*w*: *w* $\in L$, $\forall z \in \Sigma^*$ ($z \neq \varepsilon \rightarrow wz \notin L$)} *mix*(*L*) = {*w*: $\exists x, y, z$ (*x* $\in L$, *x* = *yz*, |*y*| = |*z*|, *w* = *yz*^R})

Recursive formula for constructing a regular expression from a DFSM: r_{ijk} is $r_{ij(k-1)} \cup r_{ik(k-1)}(r_{kk(k-1)})*r_{kj(k-1)}$ **The set of regular languages is closed under** complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive: The contrapositive form: Formally, if L is regular, then $(\forall k \ge 1)$ $\exists k \geq 1$ such that $(\exists a string w \in L)$ (\forall strings $w \in L$, $(|w| \ge k and$ $(|w| \ge k \rightarrow$ $(\forall x, y, z)$ $(\exists x, y, z (w = xyz,$ $(w = xyz \land |xy| \le k \land y \ne \varepsilon) \rightarrow$ $|xy| \leq k$, $\exists q \ge 0 (xy^q z \text{ is not in } L)$ $y \neq \varepsilon$, and))))) \rightarrow L is not regular $\forall q \geq 0 (xy^q z \text{ is in } L))))$







