
MA/CSSE 474  Exam 2 Notation and Formulas page    Name ________________    (turn this in with your exam) 

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet symbols. 
 

DFSM notation: M= (K, Σ, δ, s, A), where: 
   K is a finite set of states, Σ  is a finite alphabet 
   s ∈ K is start state,    A ⊆ K is set of accepting states 
   δ: (K × Σ) → K  is the transition function 

Extend δ's definition to δ: (K × Σ*) → K by the recursive definition δ(q, ε)=q,     δ(q, xa) = δ(δ(q, x), a) 
M accepts w iff  δ(s, w) ∈ A.      L(M) = {w ∊ Σ* : δ(s, w) ∊ A} 
Alternate notation:   

(q, w) is a configuration of M. (current state, remaining input) 
The yields-in-one-step relation: |-M  : 
 (q, w)  |-M  (q', w') iff  w = a w' for some symbol a ∈ Σ, and δ (q, a) = q'  
The yields-in-zero-or-more-steps relation: |-M*  is the reflexive, transitive closure of |-M . 

A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that: 
    • C0 is an initial configuration, 
    • Cn is of the form (q, ε), for some state q ∈ KM, 
    • ∀i∈{0, 1, …, n-1} (Ci  |-M  Ci+1) 

       M accepts w iff the state that is part of the last step in w is in A.   
 

A language L is regular if L=L(M) for some DFSM M. 
 

In an NDFSM, the function δ is replaced by the relation Δ:    Δ ⊆ (K × (Σ ∪ {ε})) × K 

 

Equivalent strings relative to a language:  Given a language L, two strings w and x in ΣL* are indistinguishable with 
respect to L, written w≈Lx,  iff  ∀z ∈ Σ* (xz ∈ L iff yz ∈ L). 
[x] is a notation for "the equivalence class that contains the string x". 

The construction of a minimal-state DSFM based on ≈L: 
M = (K, Σ, δ, s, A), where K contains n states, one for each equivalence class of ≈L.  
s = [ε], the equivalence class containing ε under ≈L,   
A = {[x] : x ∈ L},      
δ([x], a) = [xa].   

Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language.  Any 
given element of the language will appear within a finite amount of time.  It is allowed that some may appear multiple 
times. 
Recognizer: Given a string s, recognizer halts and accepts s if s is in   the language. If not, recognizer either halts and 
rejects s or keeps running forever.  This is a semidecision procedure.  If recognizer is guaranteed to always halt and  
 (accept or reject) no matter what string it is given as input, it is a decision procedure. 

Some functions over languages: 
maxstring(L) =  
      {w ∈ L: ∀z ∈ Σ* (z ≠ ε → wz ∉ L)}. 
chop(L) =  
     {w : ∃x∈L (x = x1cx2, x1 ∈ ΣL*, x2 ∈ ΣL*, c ∈ ΣL,  
                      |x1| = |x2|, and w = x1x2)}. 
firstchars(L) =  
   {w : ∃y∈L (y = cx ∧ c ∈ ΣL ∧ x ∈ ΣL* ∧ w ∈ {c}*)}.   
 



The regular expressions over an alphabet Σ are the strings that can be obtained as follows: 
1. ∅ is a regular expression. 
2. ε is a regular expression. 
3. Every element of Σ is a regular expression. 
4. If α , β are regular expressions, then so is αβ. 
5. If α , β are regular expressions, then so is α∪β. 
6. If α is a regular expression, then so is α*. 
7. α is a regular expression, then so is α+. 
8. If α is a regular expression, then so is (α). 
 
Recursive formula for constructing a regular expression from a DFSM: rijk is rij(k-1) ∪ rik(k-1)(rkk(k-1))*rkj(k-1) 

The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse 
 
Pumping Theorem and its contrapositive: 
Formally, if L is regular, then  

∃k ≥ 1 such that     
 (∀ strings w ∈ L,  
     (|w| ≥ k  →  
         (∃ x, y, z (w = xyz, 
     |xy| ≤ k,  
     y ≠ ε, and 
     ∀q ≥ 0 (xyqz is in L))))) 

 
 

 

Reg. exp. operator precedence (High to Low): 
      parenthesized expressions, * and +, concatenation, union 

The contrapositive form: 
(∀k ≥ 1      
   (∃ a string w ∈ L 
       (|w| ≥ k and  
           (∀ x, y, z  
             (  (w = xyz ∧  |xy| ≤ k ∧ y ≠ ε) →  
                 ∃q ≥ 0 (xyqz is not in L)  
             ) )  )  )) 
→ L is not regular  

Functions on languages: 
firstchars(L) = {w : ∃y∈L (y = cx, c ∈ ΣL, x ∈ ΣL*, and w ∈ c*)} 
chop(L) =  {w : ∃x∈L  (x = x1cx2,  x1 ∈ ΣL*,  x2 ∈ ΣL*, c ∈ ΣL |x1| = |x2|, and w = x1x2)} 
maxstring(L) =  {w: w ∈ L,  ∀z ∈Σ* (z ≠ ε → wz ∉ L)} 
mix(L) =   {w: ∃x, y, z   (x ∈ L,  x = yz,  |y| = |z|,  w = yzR)} 
 
 
 


