
MA/CSSE 474 Exam 2 Notation and Formulas page Name ________________ (turn this in with your exam)

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet symbols.

DFSM notation: M= (K, Σ, δ, s, A), where:
 K is a finite set of states, Σ is a finite alphabet
 s ∈ K is start state, A ⊆ K is set of accepting states
 δ: (K × Σ) → K is the transition function

Extend δ's definition to δ: (K × Σ*) → K by the recursive definition δ(q, ε)=q, δ(q, xa) = δ(δ(q, x), a)
M accepts w iff δ(s, w) ∈ A. L(M) = {w ∊ Σ* : δ(s, w) ∊ A}
Alternate notation:

(q, w) is a configuration of M. (current state, remaining input)
The yields-in-one-step relation: |-M :
 (q, w) |-M (q', w') iff w = a w' for some symbol a ∈ Σ, and δ (q, a) = q'
The yields-in-zero-or-more-steps relation: |-M* is the reflexive, transitive closure of |-M .

A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that:
 • C0 is an initial configuration,
 • Cn is of the form (q, ε), for some state q ∈ KM,
 • ∀i∈{0, 1, …, n-1} (Ci |-M Ci+1)

 M accepts w iff the state that is part of the last step in w is in A.

A language L is regular if L=L(M) for some DFSM M.

In an NDFSM, the function δ is replaced by the relation Δ: Δ ⊆ (K × (Σ ∪ {ε})) × K

Equivalent strings relative to a language: Given a language L, two strings w and x in ΣL* are indistinguishable with
respect to L, written w≈Lx, iff ∀z ∈ Σ* (xz ∈ L iff yz ∈ L).
[x] is a notation for "the equivalence class that contains the string x".

The construction of a minimal-state DSFM based on ≈L:
M = (K, Σ, δ, s, A), where K contains n states, one for each equivalence class of ≈L.
s = [ε], the equivalence class containing ε under ≈L,
A = {[x] : x ∈ L},
δ([x], a) = [xa].

Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language. Any
given element of the language will appear within a finite amount of time. It is allowed that some may appear multiple
times.
Recognizer: Given a string s, recognizer halts and accepts s if s is in the language. If not, recognizer either halts and
rejects s or keeps running forever. This is a semidecision procedure. If recognizer is guaranteed to always halt and
 (accept or reject) no matter what string it is given as input, it is a decision procedure.

Some functions over languages:
maxstring(L) =
 {w ∈ L: ∀z ∈ Σ* (z ≠ ε → wz ∉ L)}.
chop(L) =
 {w : ∃x∈L (x = x1cx2, x1 ∈ ΣL*, x2 ∈ ΣL*, c ∈ ΣL,
 |x1| = |x2|, and w = x1x2)}.
firstchars(L) =
 {w : ∃y∈L (y = cx ∧ c ∈ ΣL ∧ x ∈ ΣL* ∧ w ∈ {c}*)}.

The regular expressions over an alphabet Σ are the strings that can be obtained as follows:
1. ∅ is a regular expression.
2. ε is a regular expression.
3. Every element of Σ is a regular expression.
4. If α , β are regular expressions, then so is αβ.
5. If α , β are regular expressions, then so is α∪β.
6. If α is a regular expression, then so is α*.
7. α is a regular expression, then so is α+.
8. If α is a regular expression, then so is (α).

Recursive formula for constructing a regular expression from a DFSM: rijk is rij(k-1) ∪ rik(k-1)(rkk(k-1))*rkj(k-1)

The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive:
Formally, if L is regular, then

∃k ≥ 1 such that
 (∀ strings w ∈ L,
 (|w| ≥ k →
 (∃ x, y, z (w = xyz,
 |xy| ≤ k,
 y ≠ ε, and
 ∀q ≥ 0 (xyqz is in L)))))

Reg. exp. operator precedence (High to Low):
 parenthesized expressions, * and +, concatenation, union

The contrapositive form:
(∀k ≥ 1
 (∃ a string w ∈ L
 (|w| ≥ k and
 (∀ x, y, z
 ((w = xyz ∧ |xy| ≤ k ∧ y ≠ ε) →
 ∃q ≥ 0 (xyqz is not in L)
)))))
→ L is not regular

Functions on languages:
firstchars(L) = {w : ∃y∈L (y = cx, c ∈ ΣL, x ∈ ΣL*, and w ∈ c*)}
chop(L) = {w : ∃x∈L (x = x1cx2, x1 ∈ ΣL*, x2 ∈ ΣL*, c ∈ ΣL |x1| = |x2|, and w = x1x2)}
maxstring(L) = {w: w ∈ L, ∀z ∈Σ* (z ≠ ε → wz ∉ L)}
mix(L) = {w: ∃x, y, z (x ∈ L, x = yz, |y| = |z|, w = yzR)}

