MAJ/CSSE 474 Exam 2 Notation and Formulas page Name (turn this in with your exam)

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet ¥; while a, b, ¢, d are individual alphabet symbols.

DFSM notation: M= (K, %, §, s, A), where:
K is a finite set of states, X is a finite alphabet
s € Kisstart state, A < K is set of accepting states
6: (K x X) — K is the transition function
Extend &'s definition to &: (K x £*) — K by the recursive definition 8(q, €)=q, 5(q, xa) = 8(5(q, X), a)
M accepts w iff 5(s,w) € A. L(M)={wez*:§(s, w) € A}
Alternate notation:
(g, w) is a configuration of M. (current state, remaining input)
The yields-in-one-step relation: |-u :
@, w) |-» (g, w") iff w=aw" for some symbola € X,and 3 (q,a) =¢'
The yields-in-zero-or-more-steps relation: |-w* is the reflexive, transitive closure of |-m.
A computation by M is a finite sequence of configurations Co, C, ..., C, for some n > 0 such that:
* Cp is an initial configuration,
* C, is of the form (g, €), for some state g € K,
*Vie{0, 1, ...,n-1} (Ci |-w Ci+)
M accepts w iff the state that is part of the last step in w is in A.

A language L is regular if L=L(M) for some DFSM M.
In an NDFSM, the function & is replaced by the relation A: A S (K x (£ U {&})) x K

ndfsmtodfsm(M: NDFSM) =

1. For each state g in K, do: Some functions over languages:
1.1 Compute eps(q). ; -

2 5'= eps(s) maxstring(L)

3. Compute &* wel:VzeX*(zze—>wz e L)}
3.1 active-states = {s'}.
326 =0. chop(L) =

3.3 While there exists some element Q of active-states for

. - * *
which &' has not yet been computed do: {w:3xel (x=x00, x1 € 2%, X2 € 2%, c € X,

For each character c in =, do: [x1] = |x2], and w = x1x2)}.
new-state = &. :
For each state ¢ in Q do: firstchars(L) =

For each state p such that (g, ¢, p) = A do:
new-state = new-state _ eps(p).
Add the transition (g, ¢, new-state) to 3"

{w:dyel(y=cxnceZirxe Zi* Aw e {c}*)}.

If new-state ¢ active-states then insert it.
4. K' = active-states.
5A={QeK:QnA+d}.

Equivalent strings relative to a language: Given a language L, two strings w and x in £, * are indistinguishable with
respect to L, written w=x, iff Vz € Z* (xz € L iffyz e L).
[x] is a notation for "the equivalence class that contains the string x"'.

The construction of a minimal-state DSFM based on = :

M= (K, %, 8, s, A), where K contains n states, one for each equivalence class of ~..

s = [¢], the equivalence class containing € under =,

A={[x]:x e L},

3([x], a) = [xa].
Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language. Any
given element of the language will appear within a finite amount of time. It is allowed that some may appear multiple
times.
Recognizer: Given a string s, recognizer halts and accepts s if sisin the language. If not, recognizer either halts and
rejects s or keeps running forever. This is a semidecision procedure. If recognizer is guaranteed to always halt and
(accept or reject) no matter what string it is given as input, it is a decision procedure.

The regular expressions over an alphabet X are the strings that can be obtained as follows:
1. @ is a regular expression.

2. g is a regular expression.

3. Every element of X is a regular expression.

4. If a, B are regular expressions, then so is of.
5

6

7

8

Reg. exp. operator precedence (High to Low):
parenthesized expressions, * and *, concatenation, union

Functions on languages:

firstchars(L) ={w:3dyel (y=cx,c € Z;, x € Z;*, and w € c*)}

chop(L) = {w:3xel (x=xicx2, X1 € Z.*, x2 € Z,*, c € X1 |x1] = |x2], and w = x1x2)}
maxstring(L) = {(w:w e L, VzeX*(zze—>wz ¢ L)}

mix(L)= {w:3x,y,z (xel, x=yz, |y| =1z|, w=yzR)}

. If o, B are regular expressions, then so is .
. If o is a regular expression, then so is o*.

. o is a regular expression, then so is a.*.

. If ais a regular expression, then so is (o).

Recursive formula for constructing a regular expression from a DFSM: ij IS Tij-1) U Fike-1)(Fikgk-2)) *Tkjk-2)
The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive: The contrapositive form:
Formally, if L is regular, then (Vk>1
Jk > 1 such that (Fastringw e L
(V stringsw € L, (| = k and
(lwl >k > (VX z
@xy,z(w=xyz ((W=xyzA [xy|<kAy#g) —
[xy| <k, 3q >0 (xy%z is notin L)
y#¢,and)))))
Vg >0 (xyzisin L))))) | — Lisnotregular
Summary of Algorithms Summary of Algorithms

P
AR SIS T SN VAR

The next few slides are here for reference.
| do not expect to spend class time on them.

You should know how to do all of them, but

during today's exercises you may simply "call” any of
them

as part of your decision procedures.

« Operate on FSMs without altering the language that is
accepted:

o ndfsmtodfsm{M: NOFSM)
® minDFSM (M-DFSM)
o buildFSMecanonicalform{M-FSM)

s
AR RS SN R U ARY

Algorithms, Continued

« Converting between FSMs and regular expressions:
e Given a regular expression «, construct an FSM A/
such that:
L{e) = L(M)

& Given an FSM M, construct a regular expression
such that:

L{a) = L(M)

Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropnate
FSM algorithm.

& Compute functions of languages defined as FSMs:
s Given FSMs M, and M., construct a FSM M, such that
LMy = LIM,) o L(M,).
» Given FSMs M, and M., construct a new FSM M, such that
L(M;)= L{M.) LIM,).
= Given FSM M, construct an FSM M* such that
L{M*) = (L(M))*.
« Given a DFSM M, construct an FSM M* such that
L{M*) = —L{M).
» Given two FSMs M, and M., construct an FSM M, such that
L{M.)= L{M.) L(M,).
» Given twa FSMs M, and M., construct an FSM M, such that
[LIM) = L{M,) - L{M,).
= Given an FSM M, construct an FSM M* such that
L{M*) = (LIM)JR.
= Given an FSM M, construct an FSM M* that accepts
letsub{L{M)).

R TR

Algorithms, Continued

» Converting between FSMs and regular grammars:

e Given a regular grammar G, construct an FSM M
such that:
L(G) = L(M)

« Given an FSM M, construct a regular grammar G
such that:
L{G) = L{M).

-
AR AT SO AR

