\qquad
Unless specified otherwise, $\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are strings over alphabet Σ; while $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are individual alphabet symbols.
DFSM notation: $\mathrm{M}=(K, \Sigma, \delta, s, A)$, where:
K is a finite set of states, Σ is a finite alphabet
$s \in K$ is start state, $\quad A \subseteq K$ is set of accepting states
$\delta:(K \times \Sigma) \rightarrow K$ is the transition function
Extend δ 's definition to $\delta:\left(K \times \Sigma^{*}\right) \rightarrow K$ by the recursive definition $\delta(\mathrm{q}, \varepsilon)=\mathrm{q}, \quad \delta(\mathrm{q}, \mathrm{xa})=\delta(\delta(\mathrm{q}, \mathrm{x}), \mathrm{a})$
M accepts wiff $\delta(s, w) \in A . \quad L(M)=\left\{w \in \Sigma^{*}: \delta(s, w) \in A\right\}$

Alternate notation:

(q, w) is a configuration of M . (current state, remaining input)
The yields-in-one-step relation: $\mid-м$:
$(q, w) \mid-m\left(q^{\prime}, w^{\prime}\right)$ iff $w=a w^{\prime}$ for some symbol $a \in \Sigma$, and $\delta(q, a)=q^{\prime}$
The yields-in-zero-or-more-steps relation: $\mid-\mu^{*}$ is the reflexive, transitive closure of $\mid-м$.
A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε), for some state $q \in K_{M}$,
- $\forall \mathrm{i} \in\{0,1, \ldots, \mathrm{n}-1\}\left(C_{\mathrm{i}} \mid-м C_{\mathrm{i}+1}\right)$
M accepts w iff the state that is part of the last step in w is in A.
A language L is regular if $\mathrm{L}=\mathrm{L}(\mathrm{M})$ for some DFSM M .
In an NDFSM, the function δ is replaced by the relation Δ :

ndfsmtodfsm(M: NDFSM) = 1. For each state q in K_{M} do: 1.1 Compute eps(q). 2. $s^{\prime}=e p s(s)$ 3. Compute δ^{\prime} : 3.1 active-states $=\{s\}$. $3.2 \delta^{\prime}=\varnothing$. 3.3 While there exists some element Q of active-states for which δ ' has not yet been computed do: For each character c in Σ_{M} do: new-state $=\varnothing$. For each state q in Q do: For each state p such that $(q, c, p) \in \Delta$ do: new-state $=$ new-state $\cup \operatorname{eps}(p)$. Add the transition (q, c, new-state) to δ^{\prime}. If new-state \notin active-states then insert it. 4. $K^{\prime}=$ active-states. 5. $A^{\prime}=\{Q \in K: Q \cap A \neq \varnothing\}$.

```
\(\Delta \subseteq(K \times(\Sigma \cup\{\varepsilon\})) \times K\)
```


Some functions over languages:

maxstring $(L)=$
$\left\{w \in L: \forall z \in \Sigma^{*}(z \neq \varepsilon \rightarrow w z \notin L)\right\}$.
$\operatorname{chop}(L)=$
$\left\{w: \exists x \in L\left(x=x_{1} C x_{2}, x_{1} \in \Sigma_{L}{ }^{*}, x_{2} \in \Sigma_{\llcorner }{ }^{*}, c \in \Sigma_{L}\right.\right.$,
$\left|x_{1}\right|=\left|x_{2}\right|$, and $\left.\left.w=x_{1} x_{2}\right)\right\}$.
firstchars $(L)=$
$\left\{w: \exists y \in L\left(y=c x \wedge c \in \Sigma_{L} \wedge x \in \Sigma_{L}{ }^{*} \wedge w \in\{c\}^{*}\right)\right\}$.

Equivalent strings relative to a language: Given a language L, two strings wand x in $\Sigma_{\mathrm{L}} *$ are indistinguishable with respect to L, written $w \approx_{L} x$, iff $\forall z \in \Sigma^{*}(x z \in L$ iff $y z \in L)$.
$[\mathrm{x}]$ is a notation for "the equivalence class that contains the string x ".

The construction of a minimal-state DSFM based on \approx_{L} :

$M=(K, \Sigma, \delta, s, A)$, where K contains n states, one for each equivalence class of \approx_{L}.
$s=[\varepsilon]$, the equivalence class containing ε under \approx_{L},
$A=\{[x]: x \in L\}$,
$\delta([x], a)=[x a]$.
Enumerator (generator) for a language:When it is asked, enumerator gives us the next element of the language. Any given element of the language will appear within a finite amount of time. It is allowed that some may appear multiple times.
Recognizer: Given a string s, recognizer halts and accepts s if s is in the language. If not, recognizer either halts and rejects s or keeps running forever. This is a semidecision procedure. If recognizer is guaranteed to always halt and (accept or reject) no matter what string it is given as input, it is a decision procedure.

