Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ ; while a, b, c, d are individual alphabet symbols.

DFSM notation: $M = (K, \Sigma, \delta, s, A)$, where:

K is a finite set of *states*, Σ is a finite *alphabet*

 $s \in K$ is start state, $A \subseteq K$ is set of *accepting states*

 $\delta: (K \times \Sigma) \to K$ is the *transition function*

Extend δ 's definition to δ : $(K \times \Sigma^*) \to K$ by the recursive definition $\delta(q, \varepsilon) = q$, $\delta(q, xa) = \delta(\delta(q, x), a)$

M accepts w iff $\delta(s, w) \in A$. $L(M) = \{w \in \Sigma^* : \delta(s, w) \in A\}$

Alternate notation:

(q, w) is a *configuration* of M. (current state, remaining input)

The *yields-in-one-step* relation: $|-_M$:

 $(q, w) \mid_{-M} (q', w')$ iff w = a w' for some symbol $a \in \Sigma$, and $\delta(q, a) = q'$

The yields-in-zero-or-more-steps relation: $|-_M^*|$ is the reflexive, transitive closure of $|-_M$.

A *computation* by M is a finite sequence of configurations C_0, C_1, \ldots, C_n for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε) , for some state $q \in K_M$,
- $\forall i \in \{0, 1, ..., n-1\} (C_i \mid -_M C_{i+1})$

M accepts wiff the state that is part of the last step in w is in A.

A language L is **regular** if L=L(M) for some DFSM M.

In an **NDFSM**, the function δ is replaced by the relation $\Delta : \Delta \subseteq (K \times (\Sigma \cup \{\varepsilon\})) \times K$

```
ndfsmtodfsm(M: NDFSM) =
 1. For each state q in K_M do:
         1.1 Compute eps(q).
 2. s' = eps(s)

Compute δ':

         3.1 active-states = {s'}.
         3.2 δ' = Ø.
         3.3 While there exists some element Q of active-states for
             which \delta' has not yet been computed do:
                    For each character c in \Sigma_M do:
                          new-state = \emptyset.
                          For each state q in Q do:
                              For each state p such that (q, c, p) \in \Delta do:
                                   new-state = new-state \cup eps(p).
                          Add the transition (q, c, new-state) to \delta'.
                          If new-state ∉ active-states then insert it.
 4. K' = active-states.
 5. A' = \{Q \in \mathcal{K} : Q \cap A \neq \emptyset\}.
```

Some functions over languages: maxstring(L) = $\{w \in L: \forall z \in \Sigma^* (z \neq \varepsilon \rightarrow wz \notin L)\}.$ chop(L) = $\{w: \exists x \in L \ (x = x_1 c x_2, x_1 \in \Sigma_L^*, x_2 \in \Sigma_L^*, c \in \Sigma_L\}$ $|x_1| = |x_2|$, and $w = x_1x_2$. firstchars(L) = $\{w: \exists y \in L \ (y = cx \land c \in \Sigma_L \land x \in \Sigma_L^* \land w \in \{c\}^*)\}.$

Equivalent strings relative to a language: Given a language L, two strings w and x in Σ_{L}^{*} are *indistinguishable* with respect to L, written $w \approx_L x$, iff $\forall z \in \Sigma^*$ ($xz \in L$ iff $yz \in L$). [x] is a notation for "the equivalence class that contains the string x".

The construction of a minimal-state DSFM based on \approx_L :

 $M = (K, \Sigma, \delta, s, A)$, where K contains n states, one for each equivalence class of \approx_L .

 $s = [\varepsilon]$, the equivalence class containing ε under \approx_L ,

 $A = \{ [x] : x \in L \},\$

 $\delta([x], a) = [xa].$

Enumerator (generator) for a language: When it is asked, enumerator gives us the next element of the language. Any given element of the language will appear within a finite amount of time. It is allowed that some may appear multiple times.

Recognizer: Given a string s, recognizer halts and accepts s if s is in the language. If not, recognizer either halts and rejects s or keeps running forever. This is a semidecision procedure. If recognizer is guaranteed to always halt and (accept or reject) no matter what string it is given as input, it is a **decision procedure**.