Name: \qquad Grade: \qquad <-- instructor use
0. Here are the regular expressions and languages that they denote:

1. $L(\varnothing)=\varnothing$.
2. $L(\varepsilon)=\{\varepsilon\}$.
3. If $c \in \Sigma, L(c)=\{c\}$.
4. $L(\alpha \beta)=L(\alpha) L(\beta)$.
5. $L(\alpha \cup \beta)=L(\alpha) \cup L(\beta)$.
6. $L\left(\alpha^{*}\right)=(L(\alpha))^{*}$.
7. $L\left(\alpha^{+}\right)=L\left(\alpha \alpha^{*}\right)=L(\alpha)(L(\alpha))^{*}$. If $L(\alpha)$ is equal to \varnothing, then $L\left(\alpha^{+}\right)$is also equal to \varnothing. Otherwise $L\left(\alpha^{+}\right)$is the language that is formed by concatenating together one or more strings drawn from $L(\alpha)$.
8. $L((\alpha))=L(\alpha)$.
9. State the Myhill-Nerode Theorem
10. Which of the above reg. exp. rules are "syntactic sugar"? (i.e., very convenient but not strictly necessary) Why?
11. Write a regular expression r such that $L(r)=\left\{w \in\{a, b\}^{*}:|w|\right.$ is even $\}$
12. Write a regular expression for $\left\{w \in\{0,1\}^{*}: w\right.$ is a binary representation of a multiple of 4$\}$.
13. Write a regular expression r such that $\mathrm{L}(\mathrm{r})=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains an odd number of a 's $\}$
14. $L\left((a \cup \varepsilon)^{*}\right)=$
15. Write a regular expression for $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$: no two consecutive letters in w are the same $\}$
16. State Kleene's Theorem
17. Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still have a question about. If none, please write "None".
\varnothing :

A single element of Σ :

$\varepsilon\left(\varnothing^{\star}\right):$

