Grade:____<-- instructor use

0. Here are the regular expressions and languages that they denote:

1.
$$L(\emptyset) = \emptyset$$
.
2. $L(\varepsilon) = \{\varepsilon\}$.
3. If $c \in \Sigma$, $L(c) = \{c\}$.
4. $L(\alpha\beta) = L(\alpha) L(\beta)$.
5. $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$.
6. $L(\alpha^*) = (L(\alpha))^*$.
7. $L(\alpha^+) = L(\alpha\alpha^*) = L(\alpha) (L(\alpha))^*$. If $L(\alpha)$ is equal to \emptyset , then $L(\alpha^+)$ is also equal to \emptyset . Otherwise $L(\alpha^+)$ is the language that is formed by concatenating together one or more strings drawn from $L(\alpha)$.
8. $L((\alpha)) = L(\alpha)$.

- 1. State the Myhill-Nerode Theorem
- 2. Which of the above reg. exp. rules are "syntactic sugar"? (i.e., very convenient but not strictly necessary) Why?
- 3. Write a regular expression r such that $L(r) = \{w \in \{a, b\}^*: |w| \text{ is even}\}$
- 4. Write a regular expression for $\{w \in \{0, 1\}^*: w \text{ is a binary representation of a multiple of } 4\}$.
- 5. Write a regular expression r such that $L(r) = \{w \in \{a, b\}^*: w \text{ contains an odd number of a's}\}$

6. $L((a \cup \varepsilon)^*) =$

- 7. Write a regular expression for $L = \{w \in \{a, b\}^* : no \text{ two consecutive letters in } w \text{ are the same} \}$
- 8. State Kleene's Theorem

9. Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still have a question about. If none, please write "None".

 M_1

 M_2