Name: \qquad Key \qquad Grade: \qquad <-- instructor use

1. Why can't a PDA recognize the language $A^{n} B^{n} C^{n}$?

A stack can be used to match the counts of two things, but not three.
2. Describe (in English) the actions of a $T M$ that recognizes $A^{n} B^{n} C^{n}$.

```
mate reft and right ordo.
    \(\neq a\), erase, timon elate \(a b\), then \(a c\)
    more back to mark.
    kepprepating vail the is no \(a\), or
            \(b\) or before \(a\), or \(<\) before \(b\).
        strderb may have the in own variations
```

3. What does it mean for a language to be semidecidable?

$$
\exists a T M \text { that accepts all strings in the language }
$$

4. What is a decision problem?

A decision problem is one that has a yes/no answer for each instance.
5. Is the problem: "Are there any prime Fermat numbers greater than $1,000,000$?" decidable? Explain. Yes. One of the following algorithms is correct for this problem.

- def t() : return TRUE
- def(): return FALSE

So there is a decision procedure, we hast don't know which one it is.
6. If L is $\left\{b^{n} a: n \geq 0\right\}$ What is maxstring (L)? It is the same as L.
7. What does $\left.(q, w)\right|_{-m}\left(q^{\prime}, w^{\prime}\right)$ mean? The machine M, in state q with w as the remaining input, transitions to sate q^{\prime} with w ' as the remaining input. THIs happens ff $w=a w '$ for some $a \in \Sigma$, and $\delta(q, a)=q^{\prime}$.
8. Prove: Every DFSM M, in configuration (q, w), halts after $|w|$ steps .

Base case: If w is ε, it halts in o steps.
Induction step: Assume true for strings of length n and show for strings of length $\mathrm{n}+1$.
Let $w \in \Sigma^{*},|w|=n+1$ for some $n \in \mathbb{N}$.
Then w is ax for some $a \in \Sigma, x \in \Sigma^{*},|x|=n$.
Let q^{\prime} be $\delta(q, a)$. Then $\left.(q, w)\right|_{-m}\left(q^{\prime}, x\right)$
By induction, from configuration (q^{\prime}, x), M halts in n steps.
So, starting from the original configuration, M halts in $n+1$ steps.
9. Draw the transition diagram (or transition table) for a DFSM that accepts OddParity $=\left\{w \in\{0,1\}^{*}: w\right.$ contains an odd number of $\left.1 s\right\}$

