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MA/CSSE 474 – Theory of Computation In-class Quiz 3

Name:___________________________________________________         Grade:_____<-- instructor use 

  

1. When is a (propositional) wff a tautology?  When it is true for all values of its variables 
 
 

2. When we say a set of inference rules is sound, what do we mean? If we apply the rules to a set of axioms, we 
only end up with things entailed by those axioms 
 
 

3. What is a predicate? A function whose value is Boolean 
 
Give an example of a predicate application with no free variables Example: contains(3, {4, 5, 6}) 
 
                                                                 with one or more free variables  Example: contains(n, {4, 5, 6}) 
 

4. When is a first-order wff a sentence (statement)?  When it has no free variables 
 
 

5. Give an example of a model for ∃x (∀y (xy = 0))  Integers, with standard definitions of 0 and < 
 
 

6. From { ∀t(p(t)→q(t)), ∀t(q(t)→r(t)), ¬r(C)}, prove ¬p(C).  Give reasons for your steps.  (Continue on back) 
 

1. ∀t(p(t)→q(t))  given 

2. p(C)→q(C))  1, universal instantiation 

3. ∀t(q(t)→r(t))  given 

4. q(C)→r(C))  1, universal instantiation 

5. p(C)→r(C))  2, 4, syllogism  

6. ¬r(C)}           premise 

7. ¬p(C)}           modus tollens 
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7. Consider the set of ordered pairs of non-negative integers.  Working with another student, define a relation 

on this set that is a total ordering.  
 

Call the relation #.  Use lexicographic order. 

(a, b) # (c d) iff either a ≤ c  or  (a = c and b≤ d)  

 
A student suggested (a, b) # (c d) iff  sqrt(a2+b2) ≤ sqrt(c2+d2)  ) 
 

8. Working with another student, define a relation on the positive rational numbers that is a total ordering. 

Note that the ordering is on numbers, not just on representations of the numbers. 
 

This one turned out to be trivial.  The standard ≤ works fine.   

 

9. Working with another student, define a well-ordered relation on the rational numbers r with 0 < r < 1 . 

Hint:Hint:Hint:Hint:  Think diagonal. 
 

Given a positive rational number r, let f (r) be the reducedreducedreducedreduced fraction that represents r.  Let n(r) be the 

numerator of  f (r), and d(r),  be the denominator of f (r).  Then the ordering can again be lexicographic: 
r # s if either d(r)< d(s) or ( d(r)= d(s)) and n(r)< n(s)). 

 

Note that without the restriction to representations by reduced fractions, this is not even a partialpartialpartialpartial ordering.  

If we say that a fraction is simply a numerator and a denominator with no restrictions, we get 1/2 # 2/3 and 
2/3 # 2/4.  But 1/2 and 2/4, while they are different “fractions”, represent the same rational number. 

 

This  order is a well-order, which begins 

1/2, 1/3, 2/3, 1/4, 3/4,  1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/7, … 
 

10. Working with another student, use (strong) induction to prove by that for any natural number n, 
n(n+1)(n+2) is divisible by 6. 
 
Base case:  n=0:  (0)(1)(2) = 0(6).      
 

Induction step:  Show ∀j >2 ((∀k (0≤k<j → k(k+1)(k+2) divisible by 6) → j(j+1)(j+2) divisible by 6) 

So the induction hypothesis is (∀k (0≤k<j → k(k+1)(k+2) divisible by 6) and what we need to deduce from it is 
 j(j+1)(j+2) divisible by 6. 
 
So here we go!  Let j>3.  The particular k we want to use is j-1 (so it turns out that ordinary induction would have 
worked).  By the induction hypothesis, we have (k)(k+1)(k+2) = 6m for some m.  We want to show that 
(k+1)(k+2)(k+3) is a multiple of 6.  We can write this as this as  k(k+1)(k+2) + 3(k+1)(k+2) = 6m + 3(k+1)(k+2). 
One of k + 1 and k + 2 must be odd, and the other must be even, so their product must be even.  Thus 
3(k+1)(k+2) is divisible by 6, and 6m is divisible by 6, so their sum is divisible by 6. 
 
 

11. Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still 
have a question about.  If none, please write “None”.  Continue on the back if needed.   Must have some answer 
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Additional material:  Detailed proof of in-class example. 
 

• From Weiss, Data Structures and Problem Solving with Java, Section 7.3.4 
• Consider this function to recursively calculate Fibonacci numbers:   

F0=0        F1=1          Fn = Fn-1+Fn-2 if n≥2. 
– def fib(n): 

    if n <= 1: 
        return n 
    return fib(n-1) + fib(n-2) 

• Let CN be the number of calls to fib during the computation of fib(N). 
• It’s easy to see that C0=C1=1 ,  

and if N ≥ 2, CN = CN-1 + CN-2 + 1. 
• Prove that for N ≥ 3, CN = FN+2 + FN-1 -1.  

 
Base cases:   
If N=3, then CN = 5.   F5 + F2 -1 = 5 + 1 – 1 = 5. � 

If N=4, then CN = 9.   F6 + F3 -1 = 8 + 2 – 1 = 9. � 
 

Induction step:  Show ∀j >4 ((∀k (3≤k<j → Ck = Fk+2 + Fk-1 -1) → Cj = Fj+2 + Fj-1 -1) 
 
The two particular values for k that we use are j-1 and j-2. 
Thus Cj-2 = Fj + Fj-3 -1 and Cj-j = Fj+1 + Fj-2 -1 
 
Now we can prove the conclusion: 
 
Cj  = Cj-1 + Cj-2 + 1  (from the next-to-last bullet in the statement of the problem) 
     = (Fj+1 + Fj-2 -1) + (Fj + Fj-3 -1) + 1  (induction assumption) 
     = (Fj+1 + Fj) + (Fj-2 + Fj-3) + 1 – 1 – 1  (commutative and associative laws) 
     = Fj+2 + Fj-1 -1   (def of Fibonacci numbers) 
 
 
 

 


