Name: \qquad Grade: \qquad <-- instructor use

1. Give purely symbolic definitions of the three languages on the "Languages and Prefixes" slide

* \{a\}*
* $\{\varepsilon\} \cup\{b x: x \in\{a, b\} *\}$
* \varnothing

2. What are the two standard ways of defining a set?

* A program that enumerates the members
* A characteristic function, which given a value tells us whether that value is in the set.

3. What are the 3 properties that an eqiuivalence relation must satisfy? Reflexive, symmetric, transitive
4. For a given prime integer p , is $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{N} \wedge \exists k \in \mathbb{N}(\mathrm{a}-\mathrm{b}=\mathrm{kp})\}$ an equivalence relation? Explain.

Yes. Reflexive: $\mathrm{a}-\mathrm{a}=0 \mathrm{p}$. Symmetric. If $\mathrm{a}-\mathrm{b}=\mathrm{kp}$, then $\mathrm{b}-\mathrm{a}=-\mathrm{kp}$.
Transitive: if $\mathrm{a}-\mathrm{b}=\mathrm{kp}$ and $\mathrm{b}-\mathrm{c}=\mathrm{mp}$, then $\mathrm{a}-\mathrm{c}=(\mathrm{k}+\mathrm{m}) \mathrm{p}$.
5. If $L_{1}=\left\{a^{n}: n \geq 0\right\}$ and $L_{2}=\left\{b^{n}: n \geq 0\right\}$, what is $L_{1} L_{2}$? $\left\{a^{m} b^{n}: m, n>=0\right\}$

What is $L_{1}{ }^{*}$? Same as L_{1}
6. When is a (propositional) wff a tautology? When it is true for all values of its variables
7. When we say a set of inference rules is sound, what do we mean? If we apply the rules to a set of axioms, we only end up with things entailed by those axioms
8. What is a predicate? A function whose value is Boolean

Give an example of a predicate application with no free variables Example: contains($3,\{4,5,6\}$)
with one or more free variables Example: contains($\mathrm{n},\{4,5,6\}$)
9. When is a first-order wff a sentence (statement)? When it has no free variables
10. Give an example of a model for $\exists x(\forall y(x y=0))$ Integers, with standard definitions of 0 and $<$
11. From $\{\forall t(p(t) \rightarrow q(t)), \forall t(q(t) \rightarrow r(t)), \neg r(C)\}$, prove $\neg p(C)$. Give reasons for your steps. (Continue on back)

1. $\forall \mathrm{t}(\mathrm{p}(\mathrm{t}) \rightarrow \mathrm{q}(\mathrm{t})) \quad$ given
2. $p(C) \rightarrow q(C)) \quad$ 1, universal instantiation
3. $\forall \mathrm{t}(\mathrm{q}(\mathrm{t}) \rightarrow \mathrm{r}(\mathrm{t})) \quad$ given
4. $q(C) \rightarrow r(C)) \quad$, universal instantiation
5. $p(C) \rightarrow r(C)) \quad 2,4$, syllogism
6. $\neg \mathrm{r}(\mathrm{C})\}$
premise
7. $\neg \mathrm{p}(\mathrm{C})\} \quad$ modus tollens

Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still have a question about. If none, please write "None". Continue on the back if needed.

