Name:______ Section 8th __ 9th ___ Grade:____<-- instructor use

- 1. Give purely symbolic definitions of the three languages on the "Languages and Prefixes" slide
 - *
 - *
 - *
- 2. What three properties must an equivalence relation satisfy?
 - a)
 - b)
 - c)
- 3. For a given prime integer p, is $R_p = \{(a, b): a, b \in \mathbb{N} \land \exists k \in \mathbb{Z} (a b = kp)\}$ an equivalence relation? Explain.

- 4. If $L_1 = \{a^n: n \ge 0\}$ and $L_2 = \{b^n: n \ge 0\}$, what is L_1L_2 ?
 - What is L_1^* ?
- 5. What are two standard ways of algorithmically defining an infinite set?

*

- 6. When is a (propositional) wff a tautology? (did not get to this question in Section 2 in 201220)
- 7. When we say a set of inference rules is sound, what do we mean?
- 8. What is a predicate?

Give an example of a predicate application with no free variables

with one or more free variables

- 9. When is a first-order wff a sentence (statement)?
- 10. Give an example of a model for $\exists x (\forall y (xy = 0))$
- 11. From { $\forall t(p(t) \rightarrow q(t)), \forall t(q(t) \rightarrow r(t)), \neg r(C)$ }, prove $\neg p(C)$. Give reasons for your steps.

12. Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still have a question about. If none, please write "None". Continue on the back if needed.