474 HW 16 problems (highlighted problems are the ones to turn in)

19.1

(#1) **6**

19.2

20.1

(#3)

20.2 (#4)

20.3

20.4

20.5

(#7)

20.6

(#8)

20.7

(#9)

20.8

(#10) **9**

20.13 (#11) 9

(#5) 9

(#6) **6**

(#2) 12

1. Consider the language $L = \{ \langle M \rangle : \text{Turing machine } M \text{ accepts at least two strings} \}$.

- a. Describe in clear English a Turing machine M that semidecides L.
- **b.** Now change the definition of L just a bit. Consider:

 $L' = \{ \langle M \rangle : \text{Turing machine } M \text{ accepts } exactly 2 \text{ strings} \}.$

Can you tweak the Turing machine you described in part a to semidecide L'?

- 2. Consider the language $L = \{ \langle M \rangle : \text{Turing machine } M \text{ accepts the binary encodings of the first three prime numbers} \}$.
 - a. Describe in clear English a Turing machine M that semidecides L.
 - b. Suppose (contrary to fact, as established by Theorem 19.2) that there were a Turing machine Oracle that decided H. Using it, describe in clear English a Turing machine M that decides L.
- 1. Show that the set D (the decidable languages) is closed under:
 - a. Union
 - b. Concatenation
 - c. Kleene star
 - d. Reverse
 - e. Intersection
- 2. Show that the set SD (the semidecidable languages) is closed under:
 - a. Unior
 - b. Concatenation
 - c. Kleene star
 - d. Reverse
 - e. Intersection
- 3. Let L_1, L_2, \ldots, L_k be a collection of languages over some alphabet Σ such that:
 - For all $i \neq j, L_i \cap L_j = \emptyset$.
 - $L_1 \cup L_2 \cup \ldots \cup L_k = \Sigma^*$.
 - ∀i (L_i is in SD).

Prove that each of the languages L_1 through L_k is in D.

- **4.** If L_1 and L_3 are in D and $L_1 \subseteq L_2 \subseteq L_3$, what can we say about whether L_2 is in D?
- 5. Let L₁ and L₂ be any two decidable languages. State and prove your answer to each of the following questions:
 - a. Is it necessarily true that $L_1 L_2$ is decidable?
 - **b.** Is it possible that $L_1 \cup L_2$ is regular?
- 6. Let L₁ and L₂ be any two undecidable languages. State and prove your answer to each of the following questions:
 - **a.** Is it possible that $L_1 L_2$ is regular?
 - **b.** Is it possible that $L_1 \cup L_2$ is in D?
- 7. Let M be a Turing machine that lexicographically enumerates the language L. Prove that there exists a Turing machine M' that decides $L^{\mathbb{R}}$.
- 8. Construct a standard one-tape Turing machine M to enumerate the language:

 $\{w: w \text{ is the binary encoding of a positive integer that is divisible by 3}\}.$

Assume that M starts with its tape equal to \square . Also assume the existence of the printing subroutine P, defined in Section 20.5.1. As an example of how to use P, consider the following machine, which enumerates L', where $L' = \{w : w \text{ is the unary encoding of an even number}\}$:

Show that every infinite semidecidable language has a subset that is not decidable.