19.1
(\#1) 6

1. Consider the language $L=\{\langle M\rangle$: Turing machine M accepts at least two strings $\}$.
a. Describe in clear English a Turing machine M that semidecides L.
b. Now change the definition of L just a bit. Consider:
$L^{\prime}=\langle<M\rangle$:Turing machine M accepts exactly 2 strings \rangle.
Can you tweak the Turing machine you described in part a to semidecide L^{\prime} ?
2. Consider the language $L=\{\langle M\rangle$: Turing machine M accepts the binary encodings of the first three prime numbers $\}$.
a. Describe in clear English a Turing machine M that semidecides L.
b. Suppose (contrary to fact, as established by Theorem 19.2) that there were a Turing machine Oracle that decided H. Using it, describe in clear English a Turing machine M that decides L.
3. Show that the set D (the decidable languages) is closed under:
a. Union
b. Concatenation
c. Kleene star
d. Reverse
c. Intersection
4. Show that the set SD (the semidecidable languages) is closed under:
a. Union
b. Concatenation
c. Klene star
d. Reverse
e. Intersection
5. Let $L_{1}, L_{2}, \ldots, L_{k}$ be a collection of languages over some alphabet Σ such that:

- For all $i \neq j, L_{i} \cap L_{j}=\varnothing$.
- $L_{1} \cup L_{2} \cup \ldots \cup L_{k}=\Sigma^{*}$.
- $\forall i\left(L_{i}\right.$ is in SD).

Prove that each of the languages L_{1} through L_{k} is in D.
4. If L_{1} and L_{3} are in D and $L_{1} \subseteq L_{2} \subseteq L_{3}$, what can we say about whether L_{2} is in D ?
5. Let L_{1} and L_{2} be any two decidable languages. State and prove your answer to each of the following questions:
a. Is it necessarily true that $L_{1}-L_{2}$ is decidable?
b. Is it possible that $L_{1} \cup L_{2}$ is regular?
6. Let L_{1} and L_{2} be any two undecidable languages. State and prove your answer to each of the following questions:
a. Is it possible that $L_{1}-L_{2}$ is regular?
b. Is it possible that $L_{1} \cup L_{2}$ is in D?
7. Let M be a Turing machine that lexicographically enumerates the language L. Prove that there exists a Turing machine M^{\prime} that decides L^{R}.
8. Construct a standard one-tape Turing machine M to enumerate the language:
$\{w: w$ is the binary encoding of a positive integer that is divisible by 3$\}$.
Assume that M starts with its tape equal to \perp. Also assume the existence of the printing subroutine P, defined in Section 20.5.1. As an example of how to use P, consider the following machine, which enumerates L^{\prime}, where $L^{\prime}=\{w: w$ is the unary encoding of an even number $\}$:

13. Show that every infinite semidecidable language has a subset that is not decidable.

