
13. Show a possibly nondeterministic FSM to accept the language defined by each of the following regular expressions:
a. $\left(((a \cup b a) b \cup a a)^{*}\right.$.
b. $(\mathrm{b} \cup \varepsilon)(\mathrm{ab})^{*}(\mathrm{a} \cup \varepsilon)$.
c. $\left(b a b b^{*} \cup a\right)^{*}$.
d. $\left(\mathrm{ba} \cup\left((\mathrm{a} \cup \mathrm{bb}) \mathrm{a}^{*} \mathrm{~b}\right)\right)$.
e. $(a \cup b)^{*} a a(b \cup a a) b b(a \cup b)^{*}$.
15. Consider the following DFSM M:

a. Write a regular expression that describes $L(M)$.

There is an error in this diagram in the book. The b-transition from q_{1} to q_{3} should not be there. Remove it before doing the problem.
b. Show a DFSM that accepts $\neg L(M)$.
18. Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Let $L=\{\varepsilon, \mathrm{a}, \mathrm{b}\}$. Let R be a relation defined on Σ^{*} as follows: $\forall x y$ ($x R y$ iff $y=x \mathrm{~b}$). Let R^{\prime} be the reflexive, transitive closure of R. Let $L^{\prime}=\left\{x: \exists y \in L\left(y R^{\prime} x\right)\right\}$. Write a regular expression for L^{\prime}.

Note on 6.18 Transitive and reflexive closures are introduced in Section A. 5 Closures under various operations are also mentioned on pages 17,57 , and 72.
20. For each of the following statements, state whether it is True or False. Prove your answer.
a. $(a b)^{*} a=a(b a)^{*}$.
b. $(a \cup b)^{*} b(a \cup b)^{*}=a^{*} b(a \cup b)^{*}$.
c. $(a \cup b)^{*} b(a \cup b)^{*} \cup(a \cup b)^{*} a(a \cup b)^{*}=(a \cup b)^{*}$.
d. $(a \cup b)^{*} b(a \cup b)^{*} \cup(a \cup b)^{*} a(a \cup b)^{*}=(a \cup b)^{+}$.
e. $(a \cup b)^{*} b a(a \cup b)^{*} \cup a^{*} b^{*}=(a \cup b)^{*}$.
f. $a^{*} b(a \cup b)^{*}=(a \cup b)^{*} b(a \cup b)^{*}$.
g. If α and β are any two regular expressions, then $(\alpha \cup \beta)^{*}=\alpha(\beta \alpha \cup \alpha)$.
h. If α and β are any two regular expressions, then $(\alpha \beta)^{*} \alpha=\alpha(\beta \alpha)^{*}$.

