The construction of M is given in Fig. 2.14(b). Every path in M from q_1 to f_2 is a path labeled by some string x from q_1 to f_1 , followed by the edge from f_1 to q_2 labeled ϵ , followed by a path labeled by some string y from q_2 to f_2 . Thus L(M) = $\{xy \mid x \text{ is in } L(M_1) \text{ and } y \text{ is in } L(M_2)\}\$ and $L(M) = L(M_1)L(M_2)$ as desired.

CASE 3 $r=r_1^*$. Let $M_1=(Q_1,\Sigma_1,\delta_1,q_1,\{f_1\})$ and $L(M_1)=r_1$. Construct

$$M = (Q_1 \cup \{q_0, f_0\}, \Sigma_1, \delta, q_0, \{f_0\}),$$

where δ is given by

i) $\delta(q_0, \epsilon) = \delta(f_1, \epsilon) = \{q_1, f_0\},\$

i)
$$\delta(q_0, \epsilon) = \delta(f_1, \epsilon) = \{q_1, f_0\},\$$
ii) $\delta(q, a) = \delta_1(q, a)$ for q in $Q_1 - \{f_1\}$ and a in $\Sigma_1 \cup \{\epsilon\}$.

The construction of M is depicted in Fig. 2.14(c). Any path from q_0 to f_0 consists either of a path from q_0 to f_0 on ϵ or a path from q_0 to q_1 on ϵ , followed by some number (possibly zero) of paths from q_1 to f_1 , then back to q_1 on ϵ , each labeled by a string in $L(M_1)$, followed by a path from q_1 to f_1 on a string in $L(M_1)$, then to f_0 on ϵ . Thus there is a path in M from q_0 to f_0 labeled x if and only if we can write $x = x_1 x_2 \cdots x_j$ for some $j \ge 0$ (the case j = 0 means $x = \epsilon$) such that each x_i is in $L(M_1)$. Hence $L(M) = L(M_1)^*$ as desired.

Example 2.12 Let us construct an NFA for the regular expression 01* + 1. By our precedence rules, this expression is really $(0(1^*)) + 1$, so it is of the form $r_1 + r_2$, where $r_1 = 01^*$ and $r_2 = 1$. The automaton for r_2 is easy; it is

Start
$$q_1$$
 q_2

We may express r_1 as $r_3 r_4$, where $r_3 = 0$ and $r_4 = 1^*$. The automaton for r_3 is also easy:

Start
$$q_3$$
 q_4

In turn, r_4 is r_5^* , where r_5 is 1. An NFA for r_5 is

Start
$$q_5$$
 q_6

Note that the need to keep states of different automata disjoint prohibits us from using the same NFA for r_2 and r_5 , although they are the same expression.

To construct an NFA for $r_4 = r_5^*$ use the construction of Fig. 2.14(c). Create states q_7 and q_8 playing the roles of q_0 and f_0 , respectively. The resulting NFA for r_4 is shown in Fig. 2.15(a). Then, for $r_1 = r_3 r_4$ use the construction of Fig. 2.14(b). The result is shown in Fig. 2.15(b). Finally, use the construction of Fig. 2.14(a) to find the NFA for $r = r_1 + r_2$. Two states q_9 and q_{10} are created to fill the roles of q_0 and f_0 in that construction, and the result is shown in Fig. 2.15(c).

Fig. 2.15 Constructing an NFA from a regular expression. (a) For $r_4 = 1^*$. (b) For $r_1 = 01^*$. (c) For $r = 01^* + 1$.

The proof of Theorem 2.3 is in essence an algorithm for converting a regular expression to a finite automaton. However, the algorithm implicitly assumes that the regular expression is fully parenthesized. For regular expressions without redundant parentheses, we must determine whether the expression is of the form p + q, pq, or p^* . This is equivalent to parsing a string in a context-free language, and thus such an algorithm will be delayed until Chapter 5 where it can be done more elegantly.

Now we must show that every set accepted by a finite automaton is denoted by some regular expression. This result will complete the circle shown in Fig. 2.12.

Theorem 2.4 If L is accepted by a DFA, then L is denoted by a regular expression.

Proof Let L be the set accepted by the DFA

$$M = (\{q_1, \ldots, q_n\}, \Sigma, \delta, q_1, F).$$

Let R_{ij}^k denote the set of all strings x such that $\delta(q_i, x) = q_j$, and if $\delta(q_i, y) = q_\ell$, for any y that is a prefix (initial segment) of x, other than x or ϵ , then $\ell \leq k$. That is, R_{ij}^k is the set of all strings that take the finite automaton from state q_i to state q_j without going through any state numbered higher than k. Note that by "going through a state," we mean both entering and then leaving. Thus i or j may be greater than k. Since there is no state numbered greater than n, R_{ij}^n denotes all strings that take q_i to q_j . We can define R_{ij}^k recursively:

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1},$$

$$R_{ij}^{0} = \begin{cases} \{a \mid \delta(q_{i}, a) = q_{j}\} & \text{if } i \neq j, \\ \{a \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & \text{if } i = j. \end{cases}$$
(2.1)

Informally, the definition of R_{ij}^k above means that the inputs that cause M to go from q_i to q_j without passing through a state higher than q_k are either

- 1) in R_{ij}^{k-1} (that is, they never pass through a state as high as q_k); or
- 2) composed of a string in R_{ik}^{k-1} (which takes M to q_k for the first time) followed by zero or more strings in R_{kk}^{k-1} (which take M from q_k back to q_k without passing through q_k or a higher-numbered state) followed by a string in R_{kj}^{k-1} (which takes M from state q_k to q_i).

We must show that for each i, j, and k, there exists a regular expression r_{ij}^k denoting the language R_{ij}^k . We proceed by induction on k.

Basis (k=0). R_{ij}^0 is a finite set of strings each of which is either ϵ or a single symbol. Thus r_{ij}^0 can be written as $a_1 + a_2 + \cdots + a_p$ (or $a_1 + a_2 + \cdots + a_p + \epsilon$ if i = j), where $\{a_1, a_2, ..., a_p\}$ is the set of all symbols a such that $\delta(q_i, a) = q_j$. If there are no such a's, then \emptyset (or ϵ in the case i = j) serves as r_{ij}^0 .

Induction The recursive formula for R_{ij}^k given in (2.1) clearly involves only the regular expression operators: union, concatenation, and closure. By the induction hypothesis, for each ℓ and m there exists a regular expression $r_{\ell m}^{k-1}$ such that $L(r_{\ell m}^{k-1}) = R_{\ell m}^{k-1}$. Thus for r_{ij}^k we may select the regular expression

$$(r_{ik}^{k-1})(r_{kk}^{k-1})^*(r_{kj}^{k-1}) + r_{ij}^{k-1},$$

which completes the induction.

To finish the proof we have only to observe that

$$L(M) = \bigcup_{q_j \text{ in } F} R_{1j}^n$$

since R_{1j}^n denotes the labels of all paths from q_1 to q_j . Thus L(M) is denoted by the regular expression

$$r_{1j_1}^n + r_{1j_2}^n + \cdots + r_{1j_p}^n$$

where $F = \{q_{i_1}, q_{i_2}, ..., q_{j_n}\}$.

Example 2.13 Let M be the FA shown in Fig. 2.16. The values of r_{ij}^k for all i and j and for k = 0, 1, or 2 are tabulated in Fig. 2.17. Certain equivalences among regular expressions such as (r+s)t = rt + st and $(\epsilon + r)^* = r^*$ have been used to simplify the expressions (see Exercise 2.16). For example, strictly speaking, the expression for r_{22}^1 is given by

$$r_{22}^1 = r_{21}^0(r_{11}^0) * r_{12}^0 + r_{22}^0 = 0(\epsilon) * 0 + \epsilon.$$

Fig. 2.16 FA for Example 2.13.

	k = 0	k = 1	k = 2
r_{11}^k	6	€	(00)*
r_{12}^k	0	0	0(00)*
r_{13}^k	1	1	Ò*1
r21	0	0	0(00)*
rk 22	ϵ	ϵ + 00	(00)*
r_{23}^k	1	1 + 01	0*1
r_{23}^{k} r_{31}^{k}	Ø	Ø	(0+1)(00)*0
r_{32}^k	0 + 1	0 + 1	(0+1)(00)*
r ₃₃	ϵ	€	$\epsilon + (0 + 1)0*1$

Fig. 2.17 Tabulation of r_{ij}^k for FA of Fig. 2.16.

Similarly,

$$r_{13}^2 = r_{12}^1(r_{22}^1)^*r_{23}^1 + r_{13}^1 = 0(\epsilon + 00)^*(1 + 01) + 1.$$

Recognizing that $(\epsilon + 00)^*$ is equivalent to $(00)^*$ and that 1 + 01 is equivalent to $(\epsilon + 0)1$, we have

$$r_{13}^2 = 0(00)^*(\epsilon + 0)1 + 1.$$

Observe that $(00)^*(\epsilon+0)$ is equivalent to 0^* . Thus $0(00)^*(\epsilon+0)1+1$ is equivalent to 00*1 + 1 and hence to 0*1.

To complete the construction of the regular expression for M, which is $r_{12}^3 + r_{13}^3$, we write

$$r_{12}^{3} = r_{13}^{2}(r_{33}^{2})^{*}r_{32}^{2} + r_{12}^{2}$$

$$= 0^{*}1(\epsilon + (0+1)0^{*}1)^{*}(0+1)(00)^{*} + 0(00)^{*}$$

$$= 0^{*}1((0+1)0^{*}1)^{*}(0+1)(00)^{*} + 0(00)^{*}$$

and

$$r_{13}^3 = r_{13}^2(r_{33}^2)^*r_{33}^2 + r_{13}^2$$

$$= 0*1(\epsilon + (0+1)0*1)^*(\epsilon + (0+1)0*1) + 0*1$$

$$= 0*1((0+1)0*1)^*.$$

Hence

$$r_{12}^3 + r_{13}^3 = 0*1((0+1)0*1)*(\epsilon + (0+1)(00)*) + 0(00)*.$$