

$5.6 a$
$5.6 c$

6. Show a possibly nondeterministic FSM to accept each of the following languages: a. $\left\{\mathrm{a}^{n} \mathrm{~b} \mathrm{a}^{m}: n+m \geq 0, n=3 m\right\}$.
b. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains at least one instance of aaba, bbb or ababa $\}$.
c. $\left\{w \in\{0-9\}^{*}: w\right.$ corresponds to the decimal encoding of a natural number whose encoding contains, as a substring, the encoding of a natural number that is divisible by 3$\}$.
d. $\left\{w \in\{0,1\}^{*}: w\right.$ contains both 101 and 010 as substrings $\}$.
e. $\left\{w \in\{0.1\}^{*} ; w\right.$ corresponds to the binary encoding of a positive integer that is divisible by 16 or is odd \}.
f. $\left\{w \in\{a, b, c, d, e\}^{*}:|\boldsymbol{w}| \geq 2\right.$ and w begins and ends with the same symbol $\}$.
7. Show an FSM (deterministic or nondetermimistic) that accepts $L=\{w=\{\mathrm{a}, \mathrm{b}$, c)* : w contains at least one substring that consists of three identical symbols in a row). For example:

- The following strings are in $L_{\text {r }}$ aabbb, baacccbbb.
- The following strings are not in $L: \varepsilon$, aba, abahabab, abcbeab,

5.6(c)

Note that this one is decimal, while problem 1 is binary. Also notice the "contains a substring" part.

