474 HW 3 problems (highlighted problems are the ones to turn in)

5.2 5.2j 5.2l	 2. Show a DFSM to accept each of the following languages: a. {w ∈ {a,b}*: every a in w is immediately preceded and followed by b}. b. {w ∈ {a,b}*: w does not end in ba}. c. {w ∈ {0,1}*: w corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}. d. {w ∈ {0,1}*: w corresponds to the binary encoding, without leading 0's, of natural numbers that are powers of 4}. e. {w ∈ {0,1}*: w corresponds to the decimal encoding, without leading 0's, of an odd natural number}. f. {w ∈ {0,1}*: w has 001 as a substring}. g. {w ∈ {0,1}*: w has 001 as a substring}. h. {w ∈ {a,b}*: w has not have 001 as a substring}. i. {w ∈ {a,b}*: w has not have 001 as a substring}. j. {w ∈ {a,b}*: w has both aa and bb as a substring}. k. {w ∈ {a,b}*: w has no more than one pair of consecutive 0's and no more than one pair of consecutive 1's}. 	If you need simpler practice proiblems (and you probably do!), do some other parts of 5.2 first.
<mark></mark>	m. $\{w \in \{0, 1\}^* : \text{ none of the prefixes of } w \text{ ends in } 0\}$. n. $\{w \in \{a, b\}^* : (\#_a(w) + 2 \cdot \#_b(w)) = 50\}$. $(\#_a(w) \text{ is the number of } a's \text{ in } w)$.	
5.3	 3. Consider the children's game Rock, Paper, Scissors □. We'll say that the first p to win two rounds wins the game. Call the two players A and B. a. Define an alphabet ∑ and describe a technique for encoding Rock, Paper, Sc games as strings over ∑. (<i>Hint</i>: Each symbol in ∑ should correspond to an or pair that describes the simultaneous actions of A and B.) b. Let L_{RPS} be the language of Rock, Paper, Scissors games, encoded as string described in part (a), that correspond to wins for player A. Show a DFSN 	issors dered ngs as
<mark>5.4</mark>	accepts L_{RPS} . 4. If M is a DFSM and $\varepsilon \in L(M)$, what simple property must be true of M?	
Problem 5 (On the assignme nt sheet, not from textbook. DFSM for "divisible by 3") 5.5	 The answer is simple and straightforward, so don't look for anything complicated or tricky. (t-6)Let L be {w∈{0, 1}* : ∃n,k∈N {w = <n> ∧ n = 3k}}. I.e. the set of binary represent that are divisible by 3. Leading zeroes are allowed. Recall that Draw the transition diagram or a transition table for a DFSM that accepts L. [Hi remainders mod 3. Another hint: There are not many states].</n> Consider the following NDFSM M: 	0∈ℕ.
	For each of the following strings w , determine whether $w \in L(M)$: a. aabbba. b. bab. c. baba.	

