Recap: Announcements

- Don't forget the course evaluations on Banner Web.
- If a $90 \%+$ response rate for either section, everyone in that section gets a 5% bonus on the final exam
- Final Exam Monday 6-10PM. O 269
- You can bring 3 double-sided sheets of paper
- Covers whole course, but
- Much more emphasis on later stuff
- Includes several problems of the "which language class is this in?" flavor.

Recap: Encoding Types Other Than Strings

Graphs: use an adjacency matrix:

	1	2	3	4	5	6	7
1			\bullet				
2				\bullet			
3		\bullet					
4					\bullet		
5							
6							
7							

Or a list of edges:
101/1/11/11/10/10/100/100/101

Graph Languages

- CONNECTED $=\{<G>: G$ is an undirected graph and G is connected\}.
- HAMILTONIANCIRCUIT $=\{<G>: G$ is an undirected graph that contains a Hamiltonian circuit\}.

Characterizing Optimization Problems as Languages

-TSP-DECIDE $=\{<G$, cost \rangle : $G>$ encodes an undirected graph with a positive distance attached to each of its edges and G contains a Hamiltonian circuit whose total cost is less than <cost>\}.

Choosing A Model of Computation

We'll use Turing machines:

- Tape alphabet size?
- How many tapes?
- Deterministic vs. nondeterministic?

Measuring Time and Space Requirements

timereq (M) is a function of n :

- If M is a deterministic Turing machine that halts on all inputs, then:

$$
\begin{aligned}
\text { timereq }(M)=f(n)= & \text { the maximum number of steps } \\
& \text { that } M \text { executes on any input of } \\
& \text { length } n .
\end{aligned}
$$

Measuring Time and Space Requirements

- If M is a nondeterministic Turing machine all of whose computational paths halt on all inputs, then:

timereq $(M)=f(n)=$ the number of steps on the longest path that M executes on any input of length n.

. Measuring Time and Space Requirements

$\operatorname{spacereq}(M)$ is a function of n :

- If M is a deterministic Turing machine that halts on all inputs, then:
$\operatorname{spacereq}(M)=f(n)=$ the maximum number of different tape squares that M reads on any input of length n.
- If M is a nondeterministic Turing machine all of whose computational paths halt on all inputs, then:
$\operatorname{spacereq}(M)=f(n)=$ the maximum number of different tape squares that M reads on any path that it executes on any input of length n.

Algorithmic Gaps

We'd like to show for a language L:

1. Upper bound: There exists an algorithm that decides L and that has complexity C_{1}.
2. Lower bound: Any algorithm that decides L must have complexity at least C_{2}.
3. $C_{1}=C_{2}$.

If $C_{1}=C_{2}$, we are done. Often, we're not done.

Example: Sorting (SDT, merge, heap, sleep)

Algorithmic Gaps

Example: TSP

- Upper bound: timereq $\in \mathcal{O}\left(2^{\left(n^{k}\right)}\right)$.
- Don't have a lower bound that says polynomial isn't possible.

We group languages by what we know. And then we ask:
"Is class $C L_{1}$ equal to class $C L_{2}$?"

A Simple Example of Polynomial Speedup

Given a list of n numbers, find the minimum and the maximum elements in the list.

Or, as a language recognition problem:
$L=\left\{<\right.$ list of numbers; number $_{1} ;$ number $_{2}>$:
number ${ }_{1}$ is the minimum element of the list and number ${ }_{2}$ is the maximum element\}.
$(23,45,73,12,45,197 ; 12 ; 197) \in L$.

A Simple Example of Polynomial Speedup

The straightforward approach:
simplecompare(list: list of numbers) =
$\max =$ list[1].
$\min =\operatorname{list}[1]$.
For $i=2$ to length(list) do:
If list $[$] $<$ min then $\min =$ list [] .
If list []$]$ max then $\max =\operatorname{list}[]$.
Requires 2(n-1) comparisons. So simplecompare is $\mathcal{O}(n)$.
But we can solve this problem in $(3 / 2)(n-1)$ comparisons.
How?

A Simple Example of Polynomial Speedup

efficientcompare(list: list of numbers) = max $=$ list[1].
$\min =l i s t[1]$.
For $i=3$ to length(list) by 2 do:
If list[[] < list[$[-1]$ then:
If list []$<\min$ then $\min =$ list $[i]$.
If list $[j-1]>$ max then max $=$ list $[i-1]$.
Else:
If list $[i-1]<\min$ then $\min =$ list $[i-1]$.
If $\operatorname{list}[[]>$ max then max $=$ list $[1]$.
If length(list) is even then check the last element.
Requires 3/2(n-1) comparisons.

String Search

$t: \quad$ a b c a b a b c a b d
a b c d
a b c d
a b c d

String Search

simple-string-search(t, p : strings) $=$

$$
i=0 .
$$

$j=0$.
While $i \leq|t|-|p|$ do:
While $j<|p|$ do:
If $[[i+j]=p[j]$ then $j=j+1$.
Else exit this loop.
If $j=|p|$ then halt and accept.

Else:

$i=i+1$.
$j=0$.
Halt and reject.
Let n be $|t|$ and let m be $|p|$. In the worst case (in which it doesn't find an early match), simple-string-search will go through its outer loop almost n times and, for each of those iterations, it will go through its inner loop m times.

So timereq(simple-string-search) $\in \mathcal{O}(n m)$.

Replacing an Exponential Algorithm with a Polynomial One

- Context-free parsing can be done in $\mathcal{O}\left(n^{3}\right)$ time instead of $\mathcal{O}\left(2^{n}\right)$ time. (CYK algorithm)
- Finding the greatest common divisor of two integers can be done in $\mathcal{O}\left(\log _{2}(\max (n, m))\right)$ time instead of exponential time.

The Language Class \mathbf{P}

$L \in \mathrm{P}$ iff

- there exists some deterministic Turing machine M that decides L, and
- timereq $(M) \in \mathcal{O}\left(n^{k}\right)$ for some k.

We'll say that L is tractable iff it is in P .

Closure under Complement

Theorem: The class P is closed under complement.
Proof: If M accepts L in polynomial time, swap accepting and non accepting states to accept $\neg L$ in polynomial time.

```
M口\
    - CONNECTED = {<G> : G is an undirected graph and G is connected \(\}\) is in P .
- NOTCONNECTED \(=\{<G>: G\) is an undirected graph and \(G\) is not connected\}.
- \(\neg\) CONNECTED \(=\) NOTCONNECTED \(\cup\{\) strings that are not syntactically legal descriptions of undirected graphs\}.
\(\neg\) CONNECTED is in P by the closure theorem. What about NOTCONNECTED?
If we can check for legal syntax in polynomial time, then we can consider the universe of strings whose syntax is legal. Then we can conclude that NOTCONNECTED is in P if CONNECTED is.
```


5
 Languages That Are in \mathbf{P}

- Every regular language.
- Every context-free language since there exist context-free parsing algorithms that run in $\mathcal{O}\left(n^{3}\right)$ time.
- Others:
- $\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}} \mathrm{C}^{\mathrm{n}}$
- Nim

To Show That a Language Is In \mathbf{P}

- Describe a one-tape, deterministic Turing machine.
- It may use multiple tapes. Price:
- State an algorithm that runs on a conventional computer. Price:

How long does it take to compare two strings?

Bottom line: If ignoring polynomial factors, then just describe a deterministic algorithm.

Regular Languages

Theorem: Every regular language can be decided in linear time. So every regular language is in P.

Proof: If L is regular, there exists some DFSM M that decides it. Construct a deterministic TM M'that simulates M, moving its read/write head one square to the right at each step. When M^{\prime} reads a q, it halts. If it is in an accepting state, it accepts; otherwise it rejects.

On any input of length n, M^{\prime} will execute $n+2$ steps.
So timereq $(M) \in \mathcal{O}(n)$.

Context-Free Languages

Theorem: Every context-free language can be decided in $\mathcal{O}\left(n^{18}\right)$ time. So every context-free language is in P .

Proof: The Cocke-Kasami-Younger (CKY) algorithm can parse any context-free language in time that is $\mathcal{O}\left(n^{3}\right)$ if we count operations on a conventional computer. That algorithm can be simulated on a standard, one-tape Turing machine in $\mathcal{O}\left(n^{18}\right)$ steps.

WE could get bogged down in the details of this, but w ewon't!

Graph Languages

Represent a graph $G=(V, E)$ as a list of edges:

101/1/11/11/10/10/100/100/101/11/101

Graph Languages

CONNECTED =
$\{<G>: G$ is an undirected graph and
G is connected\}.
Is CONNECTED in P?

CONNECTED is in \mathbf{P}

connected $(<G=(V, E>)=$

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to $\{1\}$.
4. Initialize marked-vertices-counterto 1.
5. Until L is empty do:
5.1. Remove the first element from L.

Call it current-vertex.
5.2. For each edge e
that has current-vertex as an endpoint do:
Call the other endpoint of e next-vertex.
If next-vertexis not already marked then do:
Mark next-vertex.
Add next-vertex to L.
Increment marked-vertices-counterby 1.
6. If marked-vertices-counter $=|V|$ accept. Else reject.

Analyzing connected

- Step 1 takes time that is $\mathcal{O}(|V|)$.
- Steps 2, 3, and 4 each take constant time.
- The loop of step 5 can be executed at most $|V|$ times.
- Step 5.1 takes constant time.
- Step 5.2 can be executed at most $|E|$ times.

Each time, it requires at most $\mathcal{O}(|V|)$ time.

- Step 6 takes constant time.
connected $(<G=(V, E>)=$

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to $\{1\}$.
4. Initialize marked-vertices-counter to 1.
5. Until L is empty do:
5.1. Remove the first element from L. Call it current-vertex.
5.2. For each edge e
that has current-vertex as an endpoint do:
Call the other endpoint of e next-vertex.
But $|E| \leq|V|^{2}$.
So timereq(connected) is: If next-vertex is not already marked then do:
$\mathcal{O}\left(|V|^{4}\right)$.

Primality Testing

RELATIVELY-PRIME =
$\{<n, m>: n$ and m are integers that are relatively prime $\}$.

PRIMES =
$\{w: w$ is the binary encoding of a prime number $\}$

COMPOSITES =
$\{w: w$ is the binary encoding of a nonprime number $\}$

But Finding Factors Remains Hard

I HAVE NOTHING TO DO, SO IM TRYING TO CALCULATE THE PRIME FACTORS OFTHE TIME EACH MINUTE BEFORE IT CHANGES. IT WAS EASY WHEN I STARTED AT 1:00, BUT WITH EACH HOUR THE NUMBER GETS BIGGER \sim
I WONDER HOW LONG I CAN KEEP UP.

Returning to TSP

TSP-DECIDE $=\{<G$, cost $: ~<G>$ encodes an undirected graph with a positive distance attached to each of its edges and G contains a Hamiltonian circuit whose total cost is less than <cost>\}.

An NDTM to decide TSP-DECIDE:

Returning to TSP

An NDTM to decide TSP-DECIDE:

1. For $\mathrm{i}=1$ to $|\mathrm{V}|$ do:

Choose a vertex that hasn't yet been chosen.
2. Check that the path defined by the chosen sequence of vertices is a Hamiltonian circuit through G with distance less than cost.

TSP and Other Problems Like It
 TSP-DECIDE, and other problems like it, share three properties:
 1. The problem can be solved by searching through a space of partial solutions (such as routes). The size of this space grows exponentially with the size of the problem.
 2. No better technique for finding an exact solution is known.
 3. But, if a proposed solution were suddenly to appear, it

 could be checked for correctness very efficiently.
The Language Class NP

Nondeterministic deciding:
$L \in N P$ iff:

- there is some NDTM M that decides L, and
- timereq $(M) \in \mathcal{O}\left(n^{k}\right)$ for some k.

NDTM deciders:

TSP Again

TSP-DECIDE $=\{<G$, cost $:<G>$ encodes an undirected graph with a positive distance attached to each of its edges and G contains a Hamiltonian circuit whose total cost is less than <cost>\}.

Suppose some Oracle presented a candidate path c:
$<G, \operatorname{cost}, v_{1}, v_{7}, v_{4}, v_{3}, v_{8}, v_{5}, v_{2}, v_{6}, v_{1}>$

How long would it take to verify that c proves that:
$<G$, cost $>$ is in TSP-DECIDE?

Deterministic Verifying

A Turing machine V is a verifier for a language L iff:
$w \in L$ iff $\exists c(<w, c>\in L(V))$.
We'll call ca certificate.

Deterministic Verifying

An alternative definition for the class NP:
$L \in N P$ iff there exists a deterministic TM V such that:

- V is a verifier for L, and
- timereq $(V) \in \mathcal{O}\left(n^{k}\right)$ for some k.

ND Deciding and D Verifying

Theorem: These two definitions are equivalent:
(1) $L \in$ NP iff there exists a nondeterministic, polynomial-time TM that decides it.
(2) $L \in$ NP iff there exists a deterministic, polynomial-time verifier for it.

Proof: We skip it

Proving That a Language is in NP

- Exhibit an NDTM to decide it.
- Exhibit a DTM to verify it.

Example

- SAT $=\{w: w$ is a Boolean wff and w is satisfiable $\}$ is in NP.
$F_{1}=P \wedge Q \wedge \neg R$?
$F_{2}=P \wedge Q \wedge R$?
$F_{3}=P \wedge \neg P$?
$F_{4}=P \wedge(Q \vee \neg R) \wedge \neg Q$?

SAT-decide $\left(F_{4}\right)=$

SAT-verify $\left(<F_{4},(P=\right.$ True, $Q=$ False, $R=$ False $\left.)>\right)=$

3-SAT

- A literal is either a variable or a variable preceded by a single negation symbol.
- A clause is either a single literal or the disjunction of two or more literals.
- A wff is in conjunctive normal form (or CNF) iff it is either a single clause or the conjunction of two or more clauses.
- A wff is in 3-conjunctive normal form (or 3-CNF) iff it is in conjunctive normal form and each clause contains exactly three literals.

Every wff can be converted to an equivalent wff in CNF.

- 3-SAT $=\{w: w$ is a wff in Boolean logic, w is in 3-conjunctive normal form, and w is satisfiable\}.

3-SAT is in NP

The Relationship Between P and NP
 Is $\mathrm{P}=\mathrm{NP}$?

Here are some things we know:
$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E$
$P \neq E X P T I M E$

The Millenium Prize

Using Reduction in Complexity Proofs

A mapping reduction R from L_{1} to L_{2} is a

- Turing machine that
- implements some computable function f with the property that:

$$
\forall x\left(x \in L_{1} \leftrightarrow f(x) \in L_{2}\right) .
$$

If $L_{1} \leq L_{2}$ and M decides L_{2}, then:
$C(x)=M(R(x))$ will decide L_{1}.

Using Reduction in Complexity Proofs

If R is deterministic polynomial time then:

$$
L_{1} \leq_{p} L_{2} .
$$

And, whenever such an R exists:

- L_{1} must be in P if L_{2} is: if L_{2} is in P then there exists some deterministic, polynomial-time Turing machine M that decides it. So $M(R(x))$ is also a deterministic, polynomialtime Turing machine and it decides L_{1}.
- L_{1} must be in NP if L_{2} is: if L_{2} is in NP then there exists some nondeterministic, polynomial-time Turing machine M that decides it. So $M(R(x))$ is also a nondeterministic, polynomial-time Turing machine and it decides L_{1}.

Why Use Reduction?

Given $L_{1} \leq_{p} L_{2}$, we can use reduction to:

- Prove that L_{1} is in P or in NP because we already know that L_{2} is.
- Prove that L_{1} would be in P or in NP if we could somehow show that L_{2} is. When we do this, we cluster languages of similar complexity (even if we're not yet sure what that complexity is). In other words, L_{1} is no harder than L_{2} is.

NP-Completeness

A language L might have these properties:

1. L is in NP.
2. Every language in NP is deterministic, polynomial-time reducible to L.

- $\quad L$ is NP-hard iff it possesses property 2.

An NP-hard language is at least as hard as any other language in NP.

- $\quad L$ is NP-complete iff it possesses both property 1 and property 2.
All NP-complete languages can be viewed as being equivalently hard.

NP-Complete Languages

- SUBSET-SUM $=\{<S, k>: S$ is a multiset of integers, k is an integer, and there exists some subset of S whose elements sum to $k\}$.
- SET-PARTITION $=\{<S>: S$ is a multiset of objects each of which has an associated cost and there exists a way to divide S into two subsets, A and $S-A$, such that the sum of the costs of the elements in A equals the sum of the costs of the elements in $S-A\}$.
- KNAPSACK $=\{\langle S, v, c\rangle: S$ is a set of objects each of which has an associated cost and an associated value, v and c are integers, and there exists some way of choosing elements of S (duplicates allowed) such that the total cost of the chosen objects is at most c and their total value is at least $v\}$.

NP-Complete Languages

- TSP-DECIDE.
- HAMILTONIAN-PATH $=\{<G>: G$ is an undirected graph and G contains a Hamiltonian path\}.
- HAMILTONIAN-CIRCUIT $=\{<G>: G$ is an undirected graph and G contains a Hamiltonian circuit\}.
- CLIQUE $=\{<G, k>: G$ is an undirected graph with vertices V and edges E, k is an integer, $1 \leq k \leq \mid V$, and G contains a k-clique\}.
- INDEPENDENT-SET $=\{<G, k>: G$ is an undirected graph and G contains an independent set of at least k vertices\}.

NP-Complete Languages

- SUBGRAPH-ISOMORPHISM $=\left\{<G_{1}, G_{2}>\right.$:
G_{1} is isomorphic to some subgraph of $\left.G_{2}\right\}$.
Two graphs G and H are isomorphic to each other iff there exists a way to rename the vertices of G so that the result is equal to H. Another way to think about isomorphism is that two graphs are isomorphic iff their drawings are identical except for the labels on the vertices.

SUBGRAPH-ISOMORPHISM

NP-Complete Languages

- BIN-PACKING $=\{<S, c, k>: S$ is a set of objects each of which has an associated size and it is possible to divide the objects so that they fit into k bins, each of which has size $c\}$.

BIN-PACKING

In three dimensions:

Proving that L is NP-Complete

If:
L_{1} is NP-complete,
$L_{1} \leq_{p} L_{2}$, and
L_{2} is in NP,

Then L_{2} is also NP-complete.

