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MA/CSSE 474 
Theory of Computation

Computational Complexity Continued

P and NP

Recap: Announcements
• Don't forget the course evaluations on 

Banner Web.

– If a 90%+ response rate for either section, 

everyone in that section gets a 5% bonus on 

the final exam

• Final Exam Monday 6-10PM.   O 269

– You can bring 3 double-sided sheets of paper

– Covers whole course, but

– Much more emphasis on later stuff

– Includes several problems of the "which 

language class is this in?" flavor.
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Recap: Encoding Types Other Than 
Strings

The length of the encoding matters.

Integers: use any base other than 1.

111111111111 vs      1100

111111111111111111111111111111 vs    11110

logax = logab logbx

● PRIMES = {w : w is the binary encoding of a prime number}

Recap: Encoding Types Other Than 
Strings

Graphs: use an adjacency matrix:

Or a list of edges:

101/1/11/11/10/10/100/100/101

1 2 3 4 5 6 7

1 •

2 •

3 •

4 •

5

6

7
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Graph Languages

● CONNECTED = {<G> : G is an undirected graph and G is

connected}. 

● HAMILTONIANCIRCUIT = {<G> : G is an undirected graph 

that contains a Hamiltonian circuit}.

● TSP-DECIDE = {<G, cost> : <G> encodes an undirected

graph with a positive distance attached to each of its

edges and G contains a Hamiltonian circuit whose total

cost is less than <cost>}.

Characterizing Optimization Problems 
as Languages
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We’ll use Turing machines:

● Tape alphabet size?

●How many tapes?

●Deterministic vs. nondeterministic?

Choosing A Model of Computation

timereq(M) is a function of n: 

● If M is a deterministic Turing machine that halts on all

inputs, then:

timereq(M) = f(n) = the maximum number of steps 

that M executes on any input of

length n.  

Measuring Time and Space Requirements
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● If M is a nondeterministic Turing machine all of whose 

computational paths halt on all inputs, then:

s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

timereq(M) = f(n) = the number of steps on the

longest path that M executes on

any input of length n.

Measuring Time and Space Requirements

spacereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all

inputs, then: 

spacereq(M) = f(n) = the maximum number of 

different tape squares that M reads on any input of 

length n.

● If M is a nondeterministic Turing machine all of

whose computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of 

different tape squares that M reads on any path that 

it executes on any input of length n.

Measuring Time and Space Requirements



2/17/2012

6

Algorithmic Gaps
We’d like to show for a language L:

1. Upper bound: There exists an algorithm that decides L

and that has complexity C1.

2. Lower bound: Any algorithm that decides L must have 

complexity at least C2.

3. C1 = C2.

If C1 = C2, we are done.   Often, we’re not done.

Example:  Sorting (SDT, merge, heap, sleep)

Algorithmic Gaps
Example: TSP 

● Upper bound: timereq ∈ O(        ). 

● Don’t have a lower bound that says polynomial isn’t 

possible.

We group languages by what we know.  And then we ask:

“Is class CL1 equal to class CL2?” 

)(
2

k
n
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Given a list of n numbers, find the minimum and the 

maximum elements in the list.  

Or, as a language recognition problem: 

L = {<list of numbers; number1; number2>: 

number1 is the minimum element of the list and 

number2 is the maximum element}.  

(23, 45, 73, 12, 45, 197; 12; 197) ∈ L.

A Simple Example of Polynomial Speedup

The straightforward approach:

simplecompare(list: list of numbers) =

max = list[1].

min = list[1].

For i = 2 to length(list) do:

If list[i] < min then min = list[i].

If list[i] > max then max = list[i].

Requires 2(n-1) comparisons.  So simplecompare is O(n). 

But we can solve this problem in (3/2)(n-1) comparisons.  

How?

A Simple Example of Polynomial Speedup
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efficientcompare(list: list of numbers) =

max = list[1].

min = list[1].

For i = 3 to length(list) by 2 do:

If list[i] < list[i-1] then: 

If list[i] < min then min = list[i].

If list[i-1] > max then max = list[i-1].

Else:

If list[i-1] < min then min = list[i-1].

If list[i] > max then max = list[i].

If length(list) is even then check the last element.

Requires 3/2(n-1) comparisons.  

A Simple Example of Polynomial Speedup

String Search

t: a b c a b a b c a b d

p: a b c d 

a b c d

a b c d

. . .  
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String Search
simple-string-search(t, p: strings) =

i = 0.
j = 0.
While i ≤ |t| - |p| do:

While j < |p| do:
If t[i+j] = p[j] then j = j + 1.

Else exit this loop.
If j = |p| then halt and accept.

Else:
i = i + 1.
j = 0.

Halt and reject.

Let n be |t| and let m be |p|.  In the worst case (in which it doesn’t
find an early match), simple-string-search will go through its outer
loop almost n times and, for each of those iterations, it will go
through its inner loop m times.  

So timereq(simple-string-search) ∈ O(nm).

K-M-P algorithm is 
O(n+m) 

● Context-free parsing can be done in O(n3) time instead of 

O(2n) time. (CYK algorithm)

● Finding the greatest common divisor of two integers can 
be done in O(log2(max(n, m))) time instead of 

exponential time.

Replacing an Exponential 
Algorithm with a Polynomial One
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The Language Class P

L ∈ P iff

● there exists some deterministic Turing machine M

that decides L, and 

● timereq(M) ∈ O(nk) for some k.

We’ll say that L is tractable iff it is in P.

Closure under Complement

Theorem: The class P is closed under complement.

Proof: If M accepts L in polynomial time, swap 

accepting and non accepting states to accept ¬L in 

polynomial time.
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Defining Complement

● CONNECTED = {<G> : G is an undirected graph and G is
connected} is in P.  

● NOTCONNECTED = {<G> : G is an undirected graph and G is 
not connected}. 

● ¬CONNECTED = NOTCONNECTED ∪ {strings that are 
not syntactically legal descriptions of undirected graphs}.

¬CONNECTED is in P by the closure theorem.  What about
NOTCONNECTED?

If we can check for legal syntax in polynomial time, then we can
consider the universe of strings whose syntax is legal.  Then we 
can conclude that NOTCONNECTED is in P if CONNECTED is. 

Languages That Are in P

● Every regular language.  

● Every context-free language since there exist 
context-free parsing algorithms that run in O(n3) time.

●Others:

● AnBnCn

●Nim
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To Show That a Language Is In P

● Describe a one-tape, deterministic Turing machine.

● It may use multiple tapes.    Price:

● State an algorithm that runs on a conventional computer.
Price: 

How long does it take to compare two strings?

q a a a ; a a a q …

Bottom line: If ignoring polynomial factors, then just describe 
a deterministic algorithm.

Theorem: Every regular language can be decided in linear 

time.  So every regular language is in P. 

Proof: If L is regular, there exists some DFSM M that 

decides it.  Construct a deterministic TM M′ that simulates 

M, moving its read/write head one square to the right at each 

step.  When M′ reads a q, it halts.  If it is in an accepting 

state, it accepts; otherwise it rejects.

On any input of length n, M′ will execute n + 2 steps.  

So timereq(M′) ∈ O(n).

Regular Languages
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Context-Free Languages

Theorem: Every context-free language can be
decided in O(n18) time.  So every context-free

language is in P. 

Proof: The Cocke-Kasami-Younger (CKY) algorithm

can parse any context-free language in time that is
O(n3) if we count operations on a conventional

computer.  That algorithm can be simulated on a
standard, one-tape Turing machine in O(n18) steps.

WE could get bogged down in the details of this, but w ewon't!

Graph Languages

Represent a graph G = (V, E) as a list of edges:

101/1/11/11/10/10/100/100/101/11/101

1             3

2 4 5
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Graph Languages

CONNECTED = 

{<G> : G is an undirected graph and 

G is connected}.

Is CONNECTED in P?

1 2

3

4

5

6

7

8

9

CONNECTED is in P
connected(<G = (V, E>) =  

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to {1}.
4. Initialize marked-vertices-counter to 1.
5. Until L is empty do:

5.1. Remove the first element from L.  
Call it current-vertex.

5.2. For each edge e
that has current-vertex as an endpoint do:

Call the other endpoint of e next-vertex. 
If next-vertex is not already marked then do:

Mark next-vertex.
Add next-vertex to L.
Increment marked-vertices-counter by 1.

6. If marked-vertices-counter = |V| accept.  Else reject.
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Analyzing connected

● Step 1 takes time that is O(|V|).

● Steps 2, 3, and 4 each take constant time.
● The loop of step 5 can be executed at most |V| times.
● Step 5.1 takes constant time.
● Step 5.2 can be executed at most |E| times. 

Each time, it requires at most O(|V|) time.

● Step 6 takes constant time. 

So timereq(connected) is:

|V|⋅O(|E|)⋅O(|V|) = O(|V|2|E|).  

But |E| ≤ |V|2.  
So timereq(connected) is:
O(|V|4).

RELATIVELY-PRIME =

{<n, m> : n and m are integers that are relatively prime}.

PRIMES = 

{w : w is the binary encoding of a prime number}

COMPOSITES = 

{w : w is the binary encoding of a nonprime number}

Primality Testing
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But Finding Factors Remains Hard

http://xkcd.com/247/

TSP-DECIDE = {<G, cost> : <G> encodes an undirected 
graph with a positive distance attached to each of its edges 
and G contains a Hamiltonian circuit whose total cost is 
less than <cost>}.

An NDTM to decide TSP-DECIDE:

Returning to TSP
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An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8

9

23

40
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4

7
3

28
30

1. For i = 1 to |V| do:

Choose a vertex that hasn’t yet been chosen.

2. Check that the path defined by the chosen sequence 

of vertices is a Hamiltonian circuit through G with 

distance less than cost.

TSP-DECIDE, and other problems like it, share three 

properties:

1. The problem can be solved by searching through a 

space of partial solutions (such as routes).  The size 

of this space grows  exponentially with the size of the 

problem.

2. No better technique for finding  an exact solution is 

known.

3. But, if a proposed solution were suddenly to appear, it 

could be checked for correctness very efficiently.

TSP and Other Problems Like It
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Nondeterministic deciding:

L ∈ NP iff:

● there is some NDTM M that decides L, and 

● timereq(M) ∈ O(nk) for some k.

NDTM deciders:
s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

The Language Class NP

TSP-DECIDE = {<G, cost> : <G> encodes an undirected 

graph with a positive distance attached to each of its

edges and G contains a Hamiltonian circuit whose 

total cost is less than <cost>}.

Suppose some Oracle presented a candidate path c:

<G, cost, v1, v7, v4, v3, v8, v5, v2, v6, v1>

How long would it take to verify that c proves that: 

<G, cost> is in TSP-DECIDE?

TSP Again
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A Turing machine V is a verifier for a language L iff:

w ∈ L iff ∃c (<w, c> ∈ L(V)).

We’ll call c a certificate.   

Deterministic Verifying

An alternative definition for the class NP:

L ∈ NP iff there exists a deterministic TM V such that:

● V is a verifier for L, and 

● timereq(V) ∈ O(nk) for some k.

Deterministic Verifying
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Theorem: These two definitions are equivalent:

(1) L ∈ NP iff there exists a nondeterministic,

polynomial-time TM that decides it.

(2) L ∈ NP iff there exists a deterministic, 

polynomial-time verifier for it.

Proof: We skip it

ND Deciding and D Verifying

● Exhibit an NDTM to decide it.

● Exhibit a DTM to verify it.

Proving That a Language is in NP
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● SAT = {w : w is a Boolean wff and w is satisfiable} is in NP.

F1 = P ∧ Q ∧ ¬R ?

F2 = P ∧ Q ∧ R ?  

F3 = P ∧ ¬P ?

F4 = P ∧ (Q ∨ ¬R) ∧ ¬Q ?

SAT-decide(F4) = 

SAT-verify (<F4, (P = True, Q = False, R = False)>) =

Example

3-SAT

• A literal is either a variable or a variable preceded by a 
single negation symbol.

• A clause is either a single literal or the disjunction of 
two or more literals.

• A wff is in conjunctive normal form (or CNF) iff it is 
either a single clause or the conjunction of two or more 
clauses.

• A wff is in 3-conjunctive normal form (or 3-CNF) iff it 
is in conjunctive normal form and each clause contains 
exactly three literals.
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Every wff can be converted to an equivalent wff in CNF.  

● 3-SAT = { w : w is a wff in Boolean logic, 
w is in 3-conjunctive normal form, and 
w is satisfiable}.

3-SAT is in NP

3-SAT

3-CNF CNF

(P ∨ ¬Q ∨ R) • •

(P ∨ ¬Q ∨ R) ∧ (¬P ∨ Q ∨ ¬R) • •

P •

(P ∨ ¬Q ∨ R ∨ S) ∧ (¬P ∨ ¬R) •

P → Q

(P ∧ ¬Q ∧ R ∧ S) ∨ (¬P ∧ ¬R)

¬(P ∨ Q ∨ R)

Is P = NP?

Here are some things we know:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

P ≠ EXPTIME

The Millenium Prize

The Relationship Between P and NP
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A mapping reduction R from L1 to L2 is a 

• Turing machine that 

• implements some computable function f with the property 

that: 

∀x (x ∈ L1 ↔ f(x) ∈ L2).

If L1 ≤ L2 and M decides L2, then:    

C(x) = M(R(x)) will decide L1.  

Using Reduction in Complexity Proofs

If R is deterministic polynomial time then:

L1 ≤P L2.  

And, whenever such an R exists:

● L1 must be in P if L2 is: if L2 is in P then there exists some

deterministic, polynomial-time Turing machine M that

decides it. So M(R(x)) is also a deterministic, polynomial-

time Turing machine and it decides L1.

● L1 must be in NP if L2 is: if L2 is in NP then there exists

some nondeterministic, polynomial-time Turing machine

M that decides it. So M(R(x)) is also a nondeterministic,

polynomial-time Turing machine and it decides L1.

Using Reduction in Complexity Proofs
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Given  L1 ≤P L2, we can use reduction to:

● Prove that L1 is in P or in NP because we already know

that L2 is.

● Prove that L1 would be in P or in NP if we could

somehow show that L2 is. When we do this, we

cluster languages of similar complexity (even if we’re

not yet sure what that complexity is). In other words,

L1 is no harder than L2 is.

Why Use Reduction?

NP-Completeness

1. L is in NP.

2. Every language in NP is deterministic, 

polynomial-time reducible to L. 

• L is NP-complete iff it possesses both property 1 

and property 2. 

• L is NP-hard iff it possesses property 2.

A language L might have these properties:

All NP-complete languages can be viewed as being 
equivalently hard.

An NP-hard language is at least as hard as any other 
language in NP.
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NP-Complete Languages

• SUBSET-SUM = {<S, k> : S is a multiset of integers, k
is an integer, and there exists some subset of S whose 
elements sum to k}. 

• SET-PARTITION = {<S> : S is a multiset of objects 
each of which has an associated cost and there exists 
a way to divide S into two subsets, A and S - A, such 
that the sum of the costs of the elements in A equals 
the sum of the costs of the elements in S - A}.

• KNAPSACK = {<S, v, c> : S is a set of objects each of 
which has an associated cost and an associated value, 
v and c are integers, and there exists some way of 
choosing elements of S (duplicates allowed) such that 
the total cost of the chosen objects is at most c and 
their total value is at least v}. 

NP-Complete Languages

• TSP-DECIDE. 

• HAMILTONIAN-PATH = {<G> : G is an undirected 
graph and G contains a Hamiltonian path}. 

• HAMILTONIAN-CIRCUIT = {<G> : G is an undirected 
graph and G contains a Hamiltonian circuit}.  

• CLIQUE = {<G, k> : G is an undirected graph with 
vertices V and edges E, k is an integer, 1 ≤ k ≤ |V|, 
and G contains a k-clique}.

• INDEPENDENT-SET = {<G, k> : G is an undirected 
graph and G contains an independent set of at least k
vertices}. 
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NP-Complete Languages

• SUBGRAPH-ISOMORPHISM = {<G1, G2> : 

G1 is isomorphic to some subgraph of G2}.  

Two graphs G and H are isomorphic to each other iff 
there exists a way to rename the vertices of G so that 
the result is equal to H.  Another way to think about 
isomorphism is that two graphs are isomorphic iff their 
drawings are identical except for the labels on the 
vertices.

SUBGRAPH-ISOMORPHISM
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NP-Complete Languages

• BIN-PACKING = {<S, c, k> : S is a set of objects each 
of which has an associated size and it is possible to 
divide the objects so that they fit into k bins, each of 
which has size c}.

BIN-PACKING

In three 

dimensions:
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Proving that L is NP-Complete

NPL1 NPL2 NPL3 NPL4 NPL...

L1

L2Theorem:

If:

L1 is NP-complete, 

L1 ≤P L2, and 

L2 is in NP, 

Then L2 is also NP-complete.


