
2/17/2012

1

MA/CSSE 474
Theory of Computation

Computational Complexity Continued

P and NP

Recap: Announcements
• Don't forget the course evaluations on

Banner Web.

– If a 90%+ response rate for either section,

everyone in that section gets a 5% bonus on

the final exam

• Final Exam Monday 6-10PM. O 269

– You can bring 3 double-sided sheets of paper

– Covers whole course, but

– Much more emphasis on later stuff

– Includes several problems of the "which

language class is this in?" flavor.

2/17/2012

2

Recap: Encoding Types Other Than
Strings

The length of the encoding matters.

Integers: use any base other than 1.

111111111111 vs 1100

111111111111111111111111111111 vs 11110

logax = logab logbx

● PRIMES = {w : w is the binary encoding of a prime number}

Recap: Encoding Types Other Than
Strings

Graphs: use an adjacency matrix:

Or a list of edges:

101/1/11/11/10/10/100/100/101

1 2 3 4 5 6 7

1 •

2 •

3 •

4 •

5

6

7

2/17/2012

3

Graph Languages

● CONNECTED = {<G> : G is an undirected graph and G is

connected}.

● HAMILTONIANCIRCUIT = {<G> : G is an undirected graph

that contains a Hamiltonian circuit}.

● TSP-DECIDE = {<G, cost> : <G> encodes an undirected

graph with a positive distance attached to each of its

edges and G contains a Hamiltonian circuit whose total

cost is less than <cost>}.

Characterizing Optimization Problems
as Languages

2/17/2012

4

We’ll use Turing machines:

● Tape alphabet size?

●How many tapes?

●Deterministic vs. nondeterministic?

Choosing A Model of Computation

timereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all

inputs, then:

timereq(M) = f(n) = the maximum number of steps

that M executes on any input of

length n.

Measuring Time and Space Requirements

2/17/2012

5

● If M is a nondeterministic Turing machine all of whose

computational paths halt on all inputs, then:

s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

timereq(M) = f(n) = the number of steps on the

longest path that M executes on

any input of length n.

Measuring Time and Space Requirements

spacereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all

inputs, then:

spacereq(M) = f(n) = the maximum number of

different tape squares that M reads on any input of

length n.

● If M is a nondeterministic Turing machine all of

whose computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of

different tape squares that M reads on any path that

it executes on any input of length n.

Measuring Time and Space Requirements

2/17/2012

6

Algorithmic Gaps
We’d like to show for a language L:

1. Upper bound: There exists an algorithm that decides L

and that has complexity C1.

2. Lower bound: Any algorithm that decides L must have

complexity at least C2.

3. C1 = C2.

If C1 = C2, we are done. Often, we’re not done.

Example: Sorting (SDT, merge, heap, sleep)

Algorithmic Gaps
Example: TSP

● Upper bound: timereq ∈ O().

● Don’t have a lower bound that says polynomial isn’t

possible.

We group languages by what we know. And then we ask:

“Is class CL1 equal to class CL2?”

)(
2

k
n

2/17/2012

7

Given a list of n numbers, find the minimum and the

maximum elements in the list.

Or, as a language recognition problem:

L = {<list of numbers; number1; number2>:

number1 is the minimum element of the list and

number2 is the maximum element}.

(23, 45, 73, 12, 45, 197; 12; 197) ∈ L.

A Simple Example of Polynomial Speedup

The straightforward approach:

simplecompare(list: list of numbers) =

max = list[1].

min = list[1].

For i = 2 to length(list) do:

If list[i] < min then min = list[i].

If list[i] > max then max = list[i].

Requires 2(n-1) comparisons. So simplecompare is O(n).

But we can solve this problem in (3/2)(n-1) comparisons.

How?

A Simple Example of Polynomial Speedup

2/17/2012

8

efficientcompare(list: list of numbers) =

max = list[1].

min = list[1].

For i = 3 to length(list) by 2 do:

If list[i] < list[i-1] then:

If list[i] < min then min = list[i].

If list[i-1] > max then max = list[i-1].

Else:

If list[i-1] < min then min = list[i-1].

If list[i] > max then max = list[i].

If length(list) is even then check the last element.

Requires 3/2(n-1) comparisons.

A Simple Example of Polynomial Speedup

String Search

t: a b c a b a b c a b d

p: a b c d

a b c d

a b c d

. . .

2/17/2012

9

String Search
simple-string-search(t, p: strings) =

i = 0.
j = 0.
While i ≤ |t| - |p| do:

While j < |p| do:
If t[i+j] = p[j] then j = j + 1.

Else exit this loop.
If j = |p| then halt and accept.

Else:
i = i + 1.
j = 0.

Halt and reject.

Let n be |t| and let m be |p|. In the worst case (in which it doesn’t
find an early match), simple-string-search will go through its outer
loop almost n times and, for each of those iterations, it will go
through its inner loop m times.

So timereq(simple-string-search) ∈ O(nm).

K-M-P algorithm is
O(n+m)

● Context-free parsing can be done in O(n3) time instead of

O(2n) time. (CYK algorithm)

● Finding the greatest common divisor of two integers can
be done in O(log2(max(n, m))) time instead of

exponential time.

Replacing an Exponential
Algorithm with a Polynomial One

2/17/2012

10

The Language Class P

L ∈ P iff

● there exists some deterministic Turing machine M

that decides L, and

● timereq(M) ∈ O(nk) for some k.

We’ll say that L is tractable iff it is in P.

Closure under Complement

Theorem: The class P is closed under complement.

Proof: If M accepts L in polynomial time, swap

accepting and non accepting states to accept ¬L in

polynomial time.

2/17/2012

11

Defining Complement

● CONNECTED = {<G> : G is an undirected graph and G is
connected} is in P.

● NOTCONNECTED = {<G> : G is an undirected graph and G is
not connected}.

● ¬CONNECTED = NOTCONNECTED ∪ {strings that are
not syntactically legal descriptions of undirected graphs}.

¬CONNECTED is in P by the closure theorem. What about
NOTCONNECTED?

If we can check for legal syntax in polynomial time, then we can
consider the universe of strings whose syntax is legal. Then we
can conclude that NOTCONNECTED is in P if CONNECTED is.

Languages That Are in P

● Every regular language.

● Every context-free language since there exist
context-free parsing algorithms that run in O(n3) time.

●Others:

● AnBnCn

●Nim

2/17/2012

12

To Show That a Language Is In P

● Describe a one-tape, deterministic Turing machine.

● It may use multiple tapes. Price:

● State an algorithm that runs on a conventional computer.
Price:

How long does it take to compare two strings?

q a a a ; a a a q …

Bottom line: If ignoring polynomial factors, then just describe
a deterministic algorithm.

Theorem: Every regular language can be decided in linear

time. So every regular language is in P.

Proof: If L is regular, there exists some DFSM M that

decides it. Construct a deterministic TM M′ that simulates

M, moving its read/write head one square to the right at each

step. When M′ reads a q, it halts. If it is in an accepting

state, it accepts; otherwise it rejects.

On any input of length n, M′ will execute n + 2 steps.

So timereq(M′) ∈ O(n).

Regular Languages

2/17/2012

13

Context-Free Languages

Theorem: Every context-free language can be
decided in O(n18) time. So every context-free

language is in P.

Proof: The Cocke-Kasami-Younger (CKY) algorithm

can parse any context-free language in time that is
O(n3) if we count operations on a conventional

computer. That algorithm can be simulated on a
standard, one-tape Turing machine in O(n18) steps.

WE could get bogged down in the details of this, but w ewon't!

Graph Languages

Represent a graph G = (V, E) as a list of edges:

101/1/11/11/10/10/100/100/101/11/101

1 3

2 4 5

2/17/2012

14

Graph Languages

CONNECTED =

{<G> : G is an undirected graph and

G is connected}.

Is CONNECTED in P?

1 2

3

4

5

6

7

8

9

CONNECTED is in P
connected(<G = (V, E>) =

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to {1}.
4. Initialize marked-vertices-counter to 1.
5. Until L is empty do:

5.1. Remove the first element from L.
Call it current-vertex.

5.2. For each edge e
that has current-vertex as an endpoint do:

Call the other endpoint of e next-vertex.
If next-vertex is not already marked then do:

Mark next-vertex.
Add next-vertex to L.
Increment marked-vertices-counter by 1.

6. If marked-vertices-counter = |V| accept. Else reject.

2/17/2012

15

Analyzing connected

● Step 1 takes time that is O(|V|).

● Steps 2, 3, and 4 each take constant time.
● The loop of step 5 can be executed at most |V| times.
● Step 5.1 takes constant time.
● Step 5.2 can be executed at most |E| times.

Each time, it requires at most O(|V|) time.

● Step 6 takes constant time.

So timereq(connected) is:

|V|⋅O(|E|)⋅O(|V|) = O(|V|2|E|).

But |E| ≤ |V|2.
So timereq(connected) is:
O(|V|4).

RELATIVELY-PRIME =

{<n, m> : n and m are integers that are relatively prime}.

PRIMES =

{w : w is the binary encoding of a prime number}

COMPOSITES =

{w : w is the binary encoding of a nonprime number}

Primality Testing

2/17/2012

16

But Finding Factors Remains Hard

http://xkcd.com/247/

TSP-DECIDE = {<G, cost> : <G> encodes an undirected
graph with a positive distance attached to each of its edges
and G contains a Hamiltonian circuit whose total cost is
less than <cost>}.

An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8

9

23

40

10

4

7
3

28
30

2/17/2012

17

An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8

9

23

40

10

4

7
3

28
30

1. For i = 1 to |V| do:

Choose a vertex that hasn’t yet been chosen.

2. Check that the path defined by the chosen sequence

of vertices is a Hamiltonian circuit through G with

distance less than cost.

TSP-DECIDE, and other problems like it, share three

properties:

1. The problem can be solved by searching through a

space of partial solutions (such as routes). The size

of this space grows exponentially with the size of the

problem.

2. No better technique for finding an exact solution is

known.

3. But, if a proposed solution were suddenly to appear, it

could be checked for correctness very efficiently.

TSP and Other Problems Like It

2/17/2012

18

Nondeterministic deciding:

L ∈ NP iff:

● there is some NDTM M that decides L, and

● timereq(M) ∈ O(nk) for some k.

NDTM deciders:
s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

The Language Class NP

TSP-DECIDE = {<G, cost> : <G> encodes an undirected

graph with a positive distance attached to each of its

edges and G contains a Hamiltonian circuit whose

total cost is less than <cost>}.

Suppose some Oracle presented a candidate path c:

<G, cost, v1, v7, v4, v3, v8, v5, v2, v6, v1>

How long would it take to verify that c proves that:

<G, cost> is in TSP-DECIDE?

TSP Again

2/17/2012

19

A Turing machine V is a verifier for a language L iff:

w ∈ L iff ∃c (<w, c> ∈ L(V)).

We’ll call c a certificate.

Deterministic Verifying

An alternative definition for the class NP:

L ∈ NP iff there exists a deterministic TM V such that:

● V is a verifier for L, and

● timereq(V) ∈ O(nk) for some k.

Deterministic Verifying

2/17/2012

20

Theorem: These two definitions are equivalent:

(1) L ∈ NP iff there exists a nondeterministic,

polynomial-time TM that decides it.

(2) L ∈ NP iff there exists a deterministic,

polynomial-time verifier for it.

Proof: We skip it

ND Deciding and D Verifying

● Exhibit an NDTM to decide it.

● Exhibit a DTM to verify it.

Proving That a Language is in NP

2/17/2012

21

● SAT = {w : w is a Boolean wff and w is satisfiable} is in NP.

F1 = P ∧ Q ∧ ¬R ?

F2 = P ∧ Q ∧ R ?

F3 = P ∧ ¬P ?

F4 = P ∧ (Q ∨ ¬R) ∧ ¬Q ?

SAT-decide(F4) =

SAT-verify (<F4, (P = True, Q = False, R = False)>) =

Example

3-SAT

• A literal is either a variable or a variable preceded by a
single negation symbol.

• A clause is either a single literal or the disjunction of
two or more literals.

• A wff is in conjunctive normal form (or CNF) iff it is
either a single clause or the conjunction of two or more
clauses.

• A wff is in 3-conjunctive normal form (or 3-CNF) iff it
is in conjunctive normal form and each clause contains
exactly three literals.

2/17/2012

22

Every wff can be converted to an equivalent wff in CNF.

● 3-SAT = { w : w is a wff in Boolean logic,
w is in 3-conjunctive normal form, and
w is satisfiable}.

3-SAT is in NP

3-SAT

3-CNF CNF

(P ∨ ¬Q ∨ R) • •

(P ∨ ¬Q ∨ R) ∧ (¬P ∨ Q ∨ ¬R) • •

P •

(P ∨ ¬Q ∨ R ∨ S) ∧ (¬P ∨ ¬R) •

P → Q

(P ∧ ¬Q ∧ R ∧ S) ∨ (¬P ∧ ¬R)

¬(P ∨ Q ∨ R)

Is P = NP?

Here are some things we know:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

P ≠ EXPTIME

The Millenium Prize

The Relationship Between P and NP

2/17/2012

23

A mapping reduction R from L1 to L2 is a

• Turing machine that

• implements some computable function f with the property

that:

∀x (x ∈ L1 ↔ f(x) ∈ L2).

If L1 ≤ L2 and M decides L2, then:

C(x) = M(R(x)) will decide L1.

Using Reduction in Complexity Proofs

If R is deterministic polynomial time then:

L1 ≤P L2.

And, whenever such an R exists:

● L1 must be in P if L2 is: if L2 is in P then there exists some

deterministic, polynomial-time Turing machine M that

decides it. So M(R(x)) is also a deterministic, polynomial-

time Turing machine and it decides L1.

● L1 must be in NP if L2 is: if L2 is in NP then there exists

some nondeterministic, polynomial-time Turing machine

M that decides it. So M(R(x)) is also a nondeterministic,

polynomial-time Turing machine and it decides L1.

Using Reduction in Complexity Proofs

2/17/2012

24

Given L1 ≤P L2, we can use reduction to:

● Prove that L1 is in P or in NP because we already know

that L2 is.

● Prove that L1 would be in P or in NP if we could

somehow show that L2 is. When we do this, we

cluster languages of similar complexity (even if we’re

not yet sure what that complexity is). In other words,

L1 is no harder than L2 is.

Why Use Reduction?

NP-Completeness

1. L is in NP.

2. Every language in NP is deterministic,

polynomial-time reducible to L.

• L is NP-complete iff it possesses both property 1

and property 2.

• L is NP-hard iff it possesses property 2.

A language L might have these properties:

All NP-complete languages can be viewed as being
equivalently hard.

An NP-hard language is at least as hard as any other
language in NP.

2/17/2012

25

NP-Complete Languages

• SUBSET-SUM = {<S, k> : S is a multiset of integers, k
is an integer, and there exists some subset of S whose
elements sum to k}.

• SET-PARTITION = {<S> : S is a multiset of objects
each of which has an associated cost and there exists
a way to divide S into two subsets, A and S - A, such
that the sum of the costs of the elements in A equals
the sum of the costs of the elements in S - A}.

• KNAPSACK = {<S, v, c> : S is a set of objects each of
which has an associated cost and an associated value,
v and c are integers, and there exists some way of
choosing elements of S (duplicates allowed) such that
the total cost of the chosen objects is at most c and
their total value is at least v}.

NP-Complete Languages

• TSP-DECIDE.

• HAMILTONIAN-PATH = {<G> : G is an undirected
graph and G contains a Hamiltonian path}.

• HAMILTONIAN-CIRCUIT = {<G> : G is an undirected
graph and G contains a Hamiltonian circuit}.

• CLIQUE = {<G, k> : G is an undirected graph with
vertices V and edges E, k is an integer, 1 ≤ k ≤ |V|,
and G contains a k-clique}.

• INDEPENDENT-SET = {<G, k> : G is an undirected
graph and G contains an independent set of at least k
vertices}.

2/17/2012

26

NP-Complete Languages

• SUBGRAPH-ISOMORPHISM = {<G1, G2> :

G1 is isomorphic to some subgraph of G2}.

Two graphs G and H are isomorphic to each other iff
there exists a way to rename the vertices of G so that
the result is equal to H. Another way to think about
isomorphism is that two graphs are isomorphic iff their
drawings are identical except for the labels on the
vertices.

SUBGRAPH-ISOMORPHISM

2/17/2012

27

NP-Complete Languages

• BIN-PACKING = {<S, c, k> : S is a set of objects each
of which has an associated size and it is possible to
divide the objects so that they fit into k bins, each of
which has size c}.

BIN-PACKING

In three

dimensions:

2/17/2012

28

Proving that L is NP-Complete

NPL1 NPL2 NPL3 NPL4 NPL...

L1

L2Theorem:

If:

L1 is NP-complete,

L1 ≤P L2, and

L2 is in NP,

Then L2 is also NP-complete.

