

Announcements

- Don't forget the course evaluations on Banner Web.
- If a $90 \%+$ response rate for either section, everyone in that section gets a 5% bonus on the final exam
- Final Exam Monday 6-10PM. O 269
- You can bring 3 double-sided sheets of paper
- Covers whole course, but
- Much more emphasis on later stuff
- Includes several problems of the "which language class is this in?" flavor.

Accepting, Rejecting, Halting, and Looping

Consider :
$L_{1}=\{<M, w>: M$ rejects $w\}$.
$L_{2}=\{<M, w\rangle: M$ does not halt on $\left.w\right\}$.
$L_{3}=\{<M, w>: M$ is a deciding TM and rejects $w\}$.

[^0]
$\left.L=\left\{<M_{a}, M_{b}\right\rangle: \varepsilon \in L\left(M_{a}\right)-L\left(M_{b}\right)\right\}$

R is a reduction from $\neg \mathrm{H} . \quad R(<M, w>)=$

1. Construct the description of $M \#(x)$ that operates as follows:
1.1. Erase the tape.
1.2. Write w.
1.3. Run M on w.
1.4. Accept.
2. Construct the description of M ? (x) that operates as follows:
2.1. Accept.
3. Return <M?, M\#>.

If Oracle exists and semidecides $L, C=\operatorname{Oracle}(R(<M, w\rangle))$
semidecides $\neg \mathrm{H}$: M ? accepts everything, including ε. So:

- $<M, w>\in \neg H: L(M$? $)-L(M \#)=$
- <M, w> $\notin \neg H: L(M$? $)-L(M \#)=$

The Problem View	The Language View	Status

Undecidable Problems About CFLs

1. Given a CFL L and a string s, is $s \in L$? (decidable)
2. Given a CFL L, is $L=\varnothing$?
3. Given a CFL L, is $L=\Sigma^{*}$?
4. Given CFLs L_{1} and L_{2}, is $L_{1}=L_{2}$?
5. Given CFLs L_{1} and L_{2}, is $L_{1} \subseteq L_{2}$?
6. Given a CFL L, is $\neg L$ context-free?
7. Given a CFL L, is L regular?
8. Given two CFLs L_{1} and L_{2}, is $L_{1} \cap L_{2}=\varnothing$?
9. Given a CFL L, is L inherently ambiguous?
10. Given PDAs M_{1} and M_{2}, is M_{2} a minimization of M_{1} ?
11. Given a CFG G, is G ambiguous?

Complexity Classes

 course.setOverviewMode(true);Asymptotic Analysis Review
in case it's been a while ...

```
/ Are All Decidable Languages Equal?
    - (ab)*
    -WWR}={w\mp@subsup{w}{}{R}:w\in{a,b\mp@subsup{}}{}{*}
    -WW = {ww:w\in{a,b}*}
    - SAT ={w:w is a wff in Boolean logic and w is satisfiable }
    - TSP (Traveling Salesman Problem). Next slides ...
```

(The Traveling Salesman Problem

Given n cities and the distances between each pair of them, find the shortest tour that returns to its starting point and visits each other city exactly once along the way.

The Traveling Salesman Problem

Given n cities:

Choose a first city
n
Choose a second
n-1
Choose a third
$\frac{n-2}{n!}$

The Traveling Salesman Problem

Can we do better than $n!$

- First city doesn’t matter.
- Order doesn't matter.

So we get ($n-1!$)/2.

The Growth Rate of $n!$

2	2	11	479001600
3	6	12	6227020800
4	24	13	87178291200
5	120	14	1307674368000
6	720	15	20922789888000
7	5040	16	355687428096000
8	40320	17	6402373705728000
9	362880	18	121645100408832000
10	3628800	19	2432902008176640000
11	39916800	36	$3.6 \cdot 10^{41}$

Asymptotic Dominance - \mathcal{O}

$f(n) \in \mathcal{O}(g(n))$ iff there exists a positive integer k and a positive constant c such that:

$$
\forall n \geq k(f(n) \leq c g(n))
$$

Alternatively, if the limit exists:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty
$$

Or, g grows at least as fast as f does.

Summarizing \mathcal{O}

$\mathcal{O}(c) \subseteq \mathcal{O}\left(\log _{a} n\right) \subseteq \mathcal{O}\left(n^{b}\right) \subseteq \mathcal{O}\left(d^{n}\right) \subseteq \mathcal{O}(n!) \subseteq \mathcal{O}\left(n^{n}\right)$

\mathcal{O} (little oh)

Asymptotic strong upper bound: $f(n) \in$ o($g(n)$) iff, for every positive c, there exists a positive integer k such that:

$$
\forall n \geq k(f(n)<c g(n))
$$

Alternatively, if the limit exists:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

In this case, we'll say that f is "little-oh" of g or that g grows strictly faster than f does.

Ω

- Asymptotic lower bound: $f(n) \in \Omega(g(n))$ iff there exists a positive integer k and a positive constant c such that:

$$
\forall n \geq k(f(n) \geq c g(n))
$$

In other words, ignoring some number of small cases (all those of size less than k), and ignoring some constant factor $c, f(n)$ is bounded from below by $g(n)$. Alternatively, if the limit exists:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0
$$

In this case, we'll say that f is "big-Omega" of g or that g grows no faster than f.

ω

- Asymptotic strong lower bound: $f(n) \in \omega(g(n))$ iff, for every positive c, there exists a positive integer k such that:

$$
\forall n \geq k(f(n)>c g(n))
$$

Alternatively, if the required limit exists:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

In this case, we'll say that f is "little-omega" of g or that g grows strictly slower than f does.

$f(n) \in \Theta(g(n))$ iff there exists a positive integer k and positive constants c_{1}, and c_{2} such that:

$$
\forall n \geq k\left(c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right)
$$

Or:
$f(n) \in \Theta(g(n))$ iff:
$f(n) \in \mathcal{O}(g(n))$, and
$g(n) \in \mathcal{O}(f(n))$.

Or:
$f(n) \in \Theta(g(n))$ iff:
$f(n) \in \mathcal{O}(g(n))$, and
$f(n) \in \Omega(g(n))$.

Is $n^{3} \in \Theta\left(n^{3}\right) ?$
Is $n^{3} \in \Theta\left(n^{4}\right)$?
Is $n^{3} \in \Theta\left(n^{5}\right)$?

Tackling Hard Problems

1. Use a technique that is guaranteed to find an optimal solution and likely to do so quickly. Linear programming:

The Concorde TSP Solver found an optimal route that visits 24,978 cities in Sweden.

http://www.tsp.gatech.edu/conco

 rde.html2. Use a technique that is guaranteed to run quickly and find a "good" solution, but not necessarily optimal.
http://en.wikipedia.org/wiki/Travelling sales man problem\#Heuristic and approximatio n algorithms

The Complexity Zoo

The attempt to characterize the decidable languages by their complexity:
http://qwiki.stanford.edu/wiki/Complexity Zoo

See especially the Petting Zoo page.

5
 All Problems Are Decision Problems

The Towers of Hanoi

Requires at least enough time to write the solution.

By restricting our attention to decision problems, the length of the answer is not a factor.

Encoding Types Other Than Strings

The length of the encoding matters.
Integers: use any base other than 1.

111111111111	vs	1100
111111111111111111111111111111	vs	11110

$\log _{a} x=\log _{a} b \log _{b} x$

- PRIMES $=\{w: w$ is the binary encoding of a prime number $\}$

F Encoding Types Other Than Strings

Graphs: use an adjacency matrix:

	1	2	3	4	5	6	7
1			\bullet				
2				\bullet			
3		\bullet					
4					\bullet		
5							
6							
7							

Or a list of edges:
101/1/11/11/10/10/100/100/101

Graph Languages

- CONNECTED $=\{<G>: G$ is an undirected graph and G is connected\}.
- HAMILTONIANCIRCUIT $=\{<G>: G$ is an undirected graph that contains a Hamiltonian circuit $\}$.

Characterizing Optimization Problems as Languages

-TSP-DECIDE $=\{<G$, cost \rangle : $G>$ encodes an undirected graph with a positive distance attached to each of its edges and G contains a Hamiltonian circuit whose total cost is less than <cost>\}.

Choosing A Model of Computation

We'll use Turing machines:

- Tape alphabet size?
- How many tapes?
- Deterministic vs. nondeterministic?

Measuring Time and Space Requirements

timereq (M) is a function of n :

- If M is a deterministic Turing machine that halts on all inputs, then:

$$
\begin{aligned}
\text { timereq }(M)=f(n)= & \text { the maximum number of steps } \\
& \text { that } M \text { executes on any input of } \\
& \text { length } n .
\end{aligned}
$$

Measuring Time and Space Requirements

- If M is a nondeterministic Turing machine all of whose computational paths halt on all inputs, then:

timereq $(M)=f(n)=$ the number of steps on the longest path that M executes on any input of length n.

. Measuring Time and Space Requirements

$\operatorname{spacereq}(M)$ is a function of n :

- If M is a deterministic Turing machine that halts on all inputs, then:
spacereq $(M)=f(n)=$ the maximum number of tape squares that M reads on any input of length n.
- If M is a nondeterministic Turing machine all of whose computational paths halt on all inputs, then:
spacereq $(M)=f(n)=$ the maximum number of tape squares that M reads on any path that it executes on any input of length n.

Algorithmic Gaps

We'd like to show for a language L:

1. Upper bound: There exists an algorithm that decides L and that has complexity C_{1}.
2. Lower bound: Any algorithm that decides L must have complexity at least C_{2}.
3. $C_{1}=C_{2}$.

If $C_{1}=C_{2}$, we are done. Often, we're not done.

Algorithmic Gaps

Example: TSP

- Upper bound: timereq $\in \mathcal{O}\left(2^{\left(n^{k}\right)}\right)$.
- Don't have a lower bound that says polynomial isn't possible.

We group languages by what we know. And then we ask:
"Is class $C L_{1}$ equal to class $C L_{2}$?"

A Simple Example of Polynomial Speedup

Given a list of n numbers, find the minimum and the maximum elements in the list. Or, as a language recognition problem:
$L=\left\{<\right.$ list of numbers, number $_{1}$, number $_{2}>$:
number ${ }_{1}$ is the minimum element of the list and number 2 is the maximum element\}.
$(23,45,73,12,45,197 ; 12 ; 197) \in L$.

A Simple Example of Polynomial Speedup

The straightforward approach:
simplecompare(list: list of numbers) =
max $=$ list[1].
$\min =\operatorname{list}[1]$.
For $i=2$ to length(list) do:
If list[[] < min then $\min =$ list[[] .
If list[[] > max then max $=\operatorname{list}[[]$.
Requires $2(n-1)$ comparisons. So simplecompare is $\mathcal{O}(n)$.

But we can solve this problem in (3/2)(n-1) comparisons.
How?

A Simple Example of Polynomial Speedup

efficientcompare(list: list of numbers) = max $=$ list[1].
$\min =l i s t[1]$.
For $i=3$ to length(list) by 2 do:
If list[[] < list[$[-1]$ then:
If list[[]$<\min$ then $\min =$ list[$]$.
If list $[i-1]>$ max then max $=$ list $[i-1]$.
Else:
If list $[i-1]<\min$ then $\min =$ list $[i-1]$.
If list[[]$>\max$ then $\max =$ list[[] .
If length(list) is even then check the last element.
Requires 3/2(n-1) comparisons.

String Search

$t: \quad$ a b c a b a b c a b d
a b c d
a b c d
a b c d

String Search

simple-string-search(t, p : strings) $=$

$$
i=0 .
$$

$j=0$.
While $i \leq|t|-|p|$ do:
While $j<|p|$ do:
If $[[i+j]=p[j]$ then $j=j+1$.
Else exit this loop.
If $j=|p|$ then halt and accept.

Else:

$i=i+1$.
$j=0$.
Halt and reject.
Let n be $|t|$ and let m be $|p|$. In the worst case (in which it doesn't find an early match), simple-string-search will go through its outer loop almost n times and, for each of those iterations, it will go through its inner loop m times.

So timereq(simple-string-search) $\in \mathcal{O}(n m)$.

Replacing an Exponential Algorithm with a Polynomial One

- Context-free parsing can be done in $\mathcal{O}\left(n^{3}\right)$ time instead of $\mathcal{O}\left(2^{n}\right)$ time. (CYK algorithm)
- Finding the greatest common divisor of two integers can be done in $\mathcal{O}\left(\log _{2}(\max (n, m))\right)$ time instead of exponential time.

The Language Class \mathbf{P}

$L \in \mathrm{P}$ iff

- there exists some deterministic Turing machine M that decides L, and
- timereq $(M) \in \mathcal{O}\left(n^{k}\right)$ for some k.

We'll say that L is tractable iff it is in P .

Closure under Complement

Theorem: The class P is closed under complement.
Proof: If M accepts L in polynomial time, swap accepting and non accepting states to accept $\neg L$ in polynomial time.

```
M口\
    - CONNECTED = {<G> : G is an undirected graph and G is connected \(\}\) is in P .
- NOTCONNECTED \(=\{<G>: G\) is an undirected graph and \(G\) is not connected\}.
- \(\neg\) CONNECTED \(=\) NOTCONNECTED \(\cup\{\) strings that are not syntactically legal descriptions of undirected graphs\}.
\(\neg\) CONNECTED is in P by the closure theorem. What about NOTCONNECTED?
If we can check for legal syntax in polynomial time, then we can consider the universe of strings whose syntax is legal. Then we can conclude that NOTCONNECTED is in P if CONNECTED is.
```


5
 Languages That Are in \mathbf{P}

- Every regular language.
- Every context-free language since there exist context-free parsing algorithms that run in $\mathcal{O}\left(n^{3}\right)$ time.
- Others:
- $\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}} \mathrm{C}^{\mathrm{n}}$
- Nim

To Show That a Language Is In \mathbf{P}

- Describe a one-tape, deterministic Turing machine.
- It may use multiple tapes. Price:
- State an algorithm that runs on a conventional computer. Price:

How long does it take to compare two strings?

Bottom line: If ignoring polynomial factors, then just describe a deterministic algorithm.

Regular Languages

Theorem: Every regular language can be decided in linear time. So every regular language is in P.

Proof: If L is regular, there exists some DFSM M that decides it. Construct a deterministic TM M'that simulates M, moving its read/write head one square to the right at each step. When M^{\prime} reads a q, it halts. If it is in an accepting state, it accepts; otherwise it rejects.

On any input of length n, M^{\prime} will execute $n+2$ steps.
So timereq $(M) \in \mathcal{O}(n)$.

Context-Free Languages

Theorem: Every context-free language can be decided in $\mathcal{O}\left(n^{18}\right)$ time. So every context-free language is in P .

Proof: The Cocke-Kasami-Younger (CKY) algorithm can parse any context-free language in time that is $\mathcal{O}\left(n^{3}\right)$ if we count operations on a conventional computer. That algorithm can be simulated on a standard, one-tape Turing machine in $\mathcal{O}\left(n^{18}\right)$ steps.

WE could get bogged down in the details of this, but w ewon't!

Graph Languages

Represent a graph $G=(V, E)$ as a list of edges:

101/1/11/11/10/10/100/100/101/11/101

Graph Languages

CONNECTED =
$\{<G>: G$ is an undirected graph and G is connected\}.

Is CONNECTED in P?

CONNECTED is in \mathbf{P}

connected $(<G=(V, E>)=$

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to $\{1\}$.
4. Initialize marked-vertices-counterto 1.
5. Until L is empty do:
5.1. Remove the first element from L. Call it current-vertex.
5.2. For each edge e that has current-vertex as an endpoint do:

Call the other endpoint of e next-vertex. If next-vertexis not already marked then do:

Mark next-vertex.
Add next-vertex to L.
Increment marked-vertices-counterby 1.
6. If marked-vertices-counter $=\mid V$ accept. Else reject.

Analyzing connected

- Step 1 takes time that is $\mathcal{O}(|V|)$.
- Steps 2, 3, and 4 each take constant time.
- The loop of step 5 can be executed at most |V| times.
- Step 5.1 takes constant time.
- Step 5.2 can be executed at most $|E|$ times. Each time, it requires at most $\mathcal{O}(|V|)$ time.
- Step 6 takes constant time.

So timereq(connected) is:

$$
\mid V \cdot \mathcal{O}(|E|) \cdot \mathcal{O}(\mid V)=\mathcal{O}\left(\left|V^{2}\right| E \mid\right) .
$$

But $|E| \leq|V|^{2}$. So timereq(connected) is:
$\mathcal{O}\left(|V|^{4}\right)$.

Primality Testing

RELATIVELY-PRIME = $\{<n, m>: n$ and m are integers that are relatively prime $\}$.

PRIMES =
$\{w: w$ is the binary encoding of a prime number $\}$

COMPOSITES =
$\{w: w$ is the binary encoding of a nonprime number $\}$

But Finding Factors Remains Hard

I HAVE NOTHING TO DO, SO IM TRYING TO CALCULATE THE PRIME FACTORS OFTHE TIME EACH MINUTE BEFORE IT CHANGES. IT WAS EASY WHEN I STARTED AT 1:00, BUT WITH EACH HOUR THE NUMBER GETS BIGGER \sim
I WONDER HOW LONG I CAN KEEP UP.

Returning to TSP

TSP-DECIDE $=\{<G$, cost $: ~<G>$ encodes an undirected graph with a positive distance attached to each of its edges and G contains a Hamiltonian circuit whose total cost is less than <cost>\}.

An NDTM to decide TSP-DECIDE:

Returning to TSP

An NDTM to decide TSP-DECIDE:

1. For $\mathrm{i}=1$ to $|\mathrm{V}|$ do:

Choose a vertex that hasn't yet been chosen.
2. Check that the path defined by the chosen sequence of vertices is a Hamiltonian circuit through G with distance less than cost.

TSP and Other Problems Like It
 TSP-DECIDE, and other problems like it, share three properties:
 1. The problem can be solved by searching through a space of partial solutions (such as routes). The size of this space grows exponentially with the size of the problem.
 2. No better (i.e., not based on search) technique for finding an exact solution is known.
 3. But, if a proposed solution were suddenly to appear, it could be checked for correctness very efficiently.

[^0]: 暗

 ## What About These?

 $$
 L_{1}=\{a\} . \quad[i n \mathrm{D}]
 $$

 $L_{2}=\{\langle M\rangle: M$ accepts $a\}$. [in SD/D]
 $L_{3}=\{<M>: L(M)=\{a\}\} .[H W$ 14]

