
2/16/2012

1

MA/CSSE 474
Theory of Computation

Computational Complexity

Announcements
• Don't forget the course evaluations on

Banner Web.

– If a 90%+ response rate for either section,

everyone in that section gets a 5% bonus on

the final exam

• Final Exam Monday 6-10PM. O 269

– You can bring 3 double-sided sheets of paper

– Covers whole course, but

– Much more emphasis on later stuff

– Includes several problems of the "which

language class is this in?" flavor.

2/16/2012

2

Consider :

L1 = {<M, w>: M rejects w}.

L2 = {<M, w>: M does not halt on w}.

L3 = {<M, w>: M is a deciding TM and rejects w}.

Accepting, Rejecting, Halting, and Looping

What About These?

L1 = {a}. [in D]

L2 = {<M> : M accepts a}. [in SD/D]

L3 = {<M> : L(M) = {a}}. [HW 14]

2/16/2012

3

L = {<Ma, Mb> : εεεε ∈∈∈∈ L(Ma) – L(Mb)}

R is a reduction from ¬H. R(<M, w>) =
1. Construct the description of M#(x) that operates as follows:

1.1. Erase the tape.
1.2. Write w.
1.3. Run M on w.
1.4. Accept.

2. Construct the description of M?(x) that operates as follows:
2.1. Accept.

3. Return <M?, M#>.

If Oracle exists and semidecides L, C = Oracle(R(<M, w>))
semidecides ¬H: M? accepts everything, including ε. So:

• <M, w> ∈ ¬H: L(M?) - L(M#) =

• <M, w> ∉ ¬H: L(M?) - L(M#) =

The Problem View The Language View Status

Does TM M have an even number of

states?

{<M> : M has an even number of

states}

D

Does TM M halt on w? H = {<M, w> : M halts on w} SD/D

Does TM M halt on the empty tape? Hε = {<M> : M halts on ε} SD/D

Is there any string on which TM M

halts?

HANY = {<M> : there exists at

least one string on which TM M

halts }

SD/D

Does TM M halt on all strings? HALL = {<M> : M halts on Σ*} ¬SD

Does TM M accept w? A = {<M, w> : M accepts w} SD/D

Does TM M accept ε? Aε = {<M> : M accepts ε} SD/D

Is there any string that TM M accepts? AANY {<M> : there exists at least

one string that TM M accepts }

SD/D

2/16/2012

4

Does TM M accept all strings? AALL = {<M> : L(M) = Σ*} ¬SD

Do TMs Ma and Mb accept the same

languages?

EqTMs = {<Ma, Mb> : L(Ma) =

L(Mb)}

¬SD

Does TM M not halt on any string? H¬ANY = {<M> : there does not

exist any string on which M halts}

¬SD

Does TM M not halt on its own

description?

{<M> : TM M does not halt on

input <M>}

¬SD

Is TM M minimal? TMMIN = {<M>: M is minimal} ¬SD

Is the language that TM M accepts

regular?

TMreg = {<M> : L(M) is regular} ¬SD

Does TM M accept the language

AnBn?

Aanbn = {<M> : L(M) = AnBn} ¬SD

1. Given a CFL L and a string s, is s ∈ L? (decidable)

2. Given a CFL L, is L = ∅?

3. Given a CFL L, is L = Σ*?

4. Given CFLs L1 and L2, is L1 = L2?

5. Given CFLs L1 and L2, is L1 ⊆ L2 ?

6. Given a CFL L, is ¬L context-free?

7. Given a CFL L, is L regular?

8. Given two CFLs L1 and L2, is L1 ∩ L2 = ∅?

9. Given a CFL L, is L inherently ambiguous?

10. Given PDAs M1 and M2, is M2 a minimization of M1?

11. Given a CFG G, is G ambiguous?

Undecidable Problems About CFLs

2/16/2012

5

Complexity Classes

course.setOverviewMode(true);

Asymptotic Analysis Review

in case it's been a while …

2/16/2012

6

Are All Decidable Languages Equal?

● (ab)*

●WWR = {wwR : w ∈ {a, b}*}

●WW = {ww : w ∈ {a, b}*}

● SAT = {w : w is a wff in Boolean logic and w is satisfiable}

● TSP (Traveling Salesman Problem). Next slides …

The Traveling Salesman Problem

Given n cities and the distances between each pair of

them, find the shortest tour that returns to its starting point

and visits each other city exactly once along the way.

15

20

25

8

9

23

40

10

4

7
3

28

2/16/2012

7

The Traveling Salesman Problem

15

20

25

8

9

23

40

10

4

7
3

28

Given n cities:

Choose a first city n

Choose a second n-1

Choose a third n-2

… n!

The Traveling Salesman Problem

Can we do better than n!

● First city doesn’t matter.

●Order doesn’t matter.

So we get (n-1!)/2.

2/16/2012

8

The Growth Rate of n!

2 2 11 479001600

3 6 12 6227020800

4 24 13 87178291200

5 120 14 1307674368000

6 720 15 20922789888000

7 5040 16 355687428096000

8 40320 17 6402373705728000

9 362880 18 121645100408832000

10 3628800 19 2432902008176640000

11 39916800 36 3.6⋅1041

Growth Rates of Functions

2/16/2012

9

Asymptotic Dominance

f(n) ∈ O(g(n)) iff there exists a positive integer k and a

positive constant c such that:

∀n ≥ k (f(n) ≤ c g(n)).

Alternatively, if the limit exists:

Or, g grows at least as fast as f does.

Asymptotic Dominance - OOOO

∞<
∞→)(

)(
lim

ng

nf

n

2/16/2012

10

Summarizing OOOO

O(c) ⊆ O(loga n) ⊆ O(nb) ⊆ O(dn) ⊆ O(n!) ⊆ O(nn)

Asymptotic strong upper bound: f(n) ∈ o(g(n)) iff, for

every positive c, there exists a positive integer k such that:

∀n ≥ k (f(n) < c g(n)).

Alternatively, if the limit exists:

In this case, we’ll say that f is “little-oh” of g or that g grows

strictly faster than f does.

O (little oh)

0
)(

)(
lim =

∞→ ng

nf

n

2/16/2012

11

●Asymptotic lower bound: f(n) ∈ Ω(g(n)) iff there exists

a positive integer k and a positive constant c such that:

∀n ≥ k (f(n) ≥ c g(n)).

In other words, ignoring some number of small cases

(all those of size less than k), and ignoring some

constant factor c, f(n) is bounded from below by g(n).

Alternatively, if the limit exists:

In this case, we’ll say that f is “big-Omega” of g or that g

grows no faster than f.

ΩΩΩΩ

0
)(

)(
lim >

∞→ ng

nf

n

● Asymptotic strong lower bound: f(n) ∈ ω(g(n))

iff, for every positive c, there exists a positive integer

k such that:

∀n ≥ k (f(n) > c g(n)).

Alternatively, if the required limit exists:

In this case, we’ll say that f is “little-omega” of g or that

g grows strictly slower than f does.

ωωωω

()
lim

()n

f n

g n→∞
= ∞

2/16/2012

12

f(n) ∈ Θ(g(n)) iff there exists a positive integer k and

positive constants c1, and c2 such that:

∀n ≥ k (c1 g(n) ≤ f(n) ≤ c2 g(n))

Or: Or:

f(n) ∈ Θ(g(n)) iff: f(n) ∈ Θ(g(n)) iff:
f(n) ∈ O(g(n)), and f(n) ∈ O(g(n)), and

g(n) ∈ O(f(n)). f(n) ∈ Ω(g(n)).

Is n3 ∈ Θ(n3)?

Is n3 ∈ Θ(n4)?

Is n3 ∈ Θ(n5)?

ΘΘΘΘ

1. Use a technique that is guaranteed to find an optimal
solution and likely to do so quickly. Linear programming:

The Concorde TSP Solver found an optimal route that visits
24,978 cities in Sweden.

Tackling Hard Problems

http://www.tsp.gatech.edu/conco
rde.html

2. Use a technique that is guaranteed to run quickly and find

a “good” solution, but not necessarily optimal.

http://en.wikipedia.org/wiki/Travelling_sales

man_problem#Heuristic_and_approximatio

n_algorithms

2/16/2012

13

The Complexity Zoo

The attempt to characterize the decidable languages by

their complexity:

http://qwiki.stanford.edu/wiki/Complexity_Zoo

See especially the Petting Zoo page.

All Problems Are Decision Problems

The Towers of Hanoi

Requires at least enough time to write the solution.

By restricting our attention to decision problems, the

length of the answer is not a factor.

2/16/2012

14

Encoding Types Other Than Strings

The length of the encoding matters.

Integers: use any base other than 1.

111111111111 vs 1100

111111111111111111111111111111 vs 11110

logax = logab logbx

● PRIMES = {w : w is the binary encoding of a prime number}

Encoding Types Other Than Strings

Graphs: use an adjacency matrix:

Or a list of edges:

101/1/11/11/10/10/100/100/101

1 2 3 4 5 6 7

1 •

2 •

3 •

4 •

5

6

7

2/16/2012

15

Graph Languages

● CONNECTED = {<G> : G is an undirected graph and G is

connected}.

● HAMILTONIANCIRCUIT = {<G> : G is an undirected graph

that contains a Hamiltonian circuit}.

● TSP-DECIDE = {<G, cost> : <G> encodes an undirected

graph with a positive distance attached to each of its

edges and G contains a Hamiltonian circuit whose total

cost is less than <cost>}.

Characterizing Optimization Problems
as Languages

2/16/2012

16

We’ll use Turing machines:

● Tape alphabet size?

●How many tapes?

●Deterministic vs. nondeterministic?

Choosing A Model of Computation

timereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all

inputs, then:

timereq(M) = f(n) = the maximum number of steps

that M executes on any input of

length n.

Measuring Time and Space Requirements

2/16/2012

17

● If M is a nondeterministic Turing machine all of whose

computational paths halt on all inputs, then:

s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

timereq(M) = f(n) = the number of steps on the

longest path that M executes on

any input of length n.

Measuring Time and Space Requirements

spacereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all

inputs, then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any input of length n.

● If M is a nondeterministic Turing machine all of

whose computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any path that it executes

on any input of length n.

Measuring Time and Space Requirements

2/16/2012

18

Algorithmic Gaps
We’d like to show for a language L:

1. Upper bound: There exists an algorithm that decides L

and that has complexity C1.

2. Lower bound: Any algorithm that decides L must have

complexity at least C2.

3. C1 = C2.

If C1 = C2, we are done. Often, we’re not done.

Algorithmic Gaps
Example: TSP

● Upper bound: timereq ∈ O().

● Don’t have a lower bound that says polynomial isn’t

possible.

We group languages by what we know. And then we ask:

“Is class CL1 equal to class CL2?”

)(2
kn

2/16/2012

19

Given a list of n numbers, find the minimum and the

maximum elements in the list. Or, as a language

recognition problem:

L = {<list of numbers, number1, number2>:

number1 is the minimum element of the list and

number2 is the maximum element}.

(23, 45, 73, 12, 45, 197; 12; 197) ∈ L.

A Simple Example of Polynomial Speedup

The straightforward approach:

simplecompare(list: list of numbers) =

max = list[1].

min = list[1].

For i = 2 to length(list) do:

If list[i] < min then min = list[i].

If list[i] > max then max = list[i].

Requires 2(n-1) comparisons. So simplecompare is O(n).

But we can solve this problem in (3/2)(n-1) comparisons.

How?

A Simple Example of Polynomial Speedup

2/16/2012

20

efficientcompare(list: list of numbers) =

max = list[1].

min = list[1].

For i = 3 to length(list) by 2 do:

If list[i] < list[i-1] then:

If list[i] < min then min = list[i].

If list[i-1] > max then max = list[i-1].

Else:

If list[i-1] < min then min = list[i-1].

If list[i] > max then max = list[i].

If length(list) is even then check the last element.

Requires 3/2(n-1) comparisons.

A Simple Example of Polynomial Speedup

String Search

t: a b c a b a b c a b d

p: a b c d

a b c d

a b c d

. . .

2/16/2012

21

String Search
simple-string-search(t, p: strings) =

i = 0.
j = 0.
While i ≤ |t| - |p| do:

While j < |p| do:
If t[i+j] = p[j] then j = j + 1.

Else exit this loop.
If j = |p| then halt and accept.

Else:
i = i + 1.
j = 0.

Halt and reject.

Let n be |t| and let m be |p|. In the worst case (in which it doesn’t
find an early match), simple-string-search will go through its outer
loop almost n times and, for each of those iterations, it will go
through its inner loop m times.

So timereq(simple-string-search) ∈ O(nm).

K-M-P algorithm is
O(n+m)

● Context-free parsing can be done in O(n3) time instead of

O(2n) time. (CYK algorithm)

● Finding the greatest common divisor of two integers can
be done in O(log2(max(n, m))) time instead of

exponential time.

Replacing an Exponential
Algorithm with a Polynomial One

2/16/2012

22

The Language Class P

L ∈ P iff

● there exists some deterministic Turing machine M

that decides L, and

● timereq(M) ∈ O(nk) for some k.

We’ll say that L is tractable iff it is in P.

Closure under Complement

Theorem: The class P is closed under complement.

Proof: If M accepts L in polynomial time, swap

accepting and non accepting states to accept ¬L in

polynomial time.

2/16/2012

23

Defining Complement

● CONNECTED = {<G> : G is an undirected graph and G is
connected} is in P.

● NOTCONNECTED = {<G> : G is an undirected graph and G is
not connected}.

● ¬CONNECTED = NOTCONNECTED ∪ {strings that are
not syntactically legal descriptions of undirected graphs}.

¬CONNECTED is in P by the closure theorem. What about
NOTCONNECTED?

If we can check for legal syntax in polynomial time, then we can
consider the universe of strings whose syntax is legal. Then we
can conclude that NOTCONNECTED is in P if CONNECTED is.

Languages That Are in P

● Every regular language.

● Every context-free language since there exist
context-free parsing algorithms that run in O(n3) time.

●Others:

● AnBnCn

●Nim

2/16/2012

24

To Show That a Language Is In P

● Describe a one-tape, deterministic Turing machine.

● It may use multiple tapes. Price:

● State an algorithm that runs on a conventional computer.
Price:

How long does it take to compare two strings?

q a a a ; a a a q …

Bottom line: If ignoring polynomial factors, then just describe
a deterministic algorithm.

Theorem: Every regular language can be decided in linear

time. So every regular language is in P.

Proof: If L is regular, there exists some DFSM M that

decides it. Construct a deterministic TM M′ that simulates

M, moving its read/write head one square to the right at each

step. When M′ reads a q, it halts. If it is in an accepting

state, it accepts; otherwise it rejects.

On any input of length n, M′ will execute n + 2 steps.

So timereq(M′) ∈ O(n).

Regular Languages

2/16/2012

25

Context-Free Languages

Theorem: Every context-free language can be
decided in O(n18) time. So every context-free

language is in P.

Proof: The Cocke-Kasami-Younger (CKY) algorithm

can parse any context-free language in time that is
O(n3) if we count operations on a conventional

computer. That algorithm can be simulated on a
standard, one-tape Turing machine in O(n18) steps.

WE could get bogged down in the details of this, but w ewon't!

Graph Languages

Represent a graph G = (V, E) as a list of edges:

101/1/11/11/10/10/100/100/101/11/101

1 3

2 4 5

2/16/2012

26

Graph Languages

CONNECTED =

{<G> : G is an undirected graph and

G is connected}.

Is CONNECTED in P?

1 2

3

4

5

6

7

8

9

CONNECTED is in P
connected(<G = (V, E>) =

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to {1}.
4. Initialize marked-vertices-counter to 1.
5. Until L is empty do:

5.1. Remove the first element from L. Call it current-vertex.
5.2. For each edge e that has current-vertex as an endpoint do:

Call the other endpoint of e next-vertex. If next-vertex is not
already marked then do:

Mark next-vertex.
Add next-vertex to L.
Increment marked-vertices-counter by 1.

6. If marked-vertices-counter = |V| accept. Else reject.

2/16/2012

27

Analyzing connected

● Step 1 takes time that is O(|V|).

● Steps 2, 3, and 4 each take constant time.
● The loop of step 5 can be executed at most |V| times.
● Step 5.1 takes constant time.
● Step 5.2 can be executed at most |E| times. Each time,

it requires at most O(|V|) time.

● Step 6 takes constant time.

So timereq(connected) is:

|V|⋅O(|E|)⋅O(|V|) = O(|V|2|E|).

But |E| ≤ |V|2. So timereq(connected) is:

O(|V|4).

RELATIVELY-PRIME =

{<n, m> : n and m are integers that are relatively prime}.

PRIMES =

{w : w is the binary encoding of a prime number}

COMPOSITES =

{w : w is the binary encoding of a nonprime number}

Primality Testing

2/16/2012

28

But Finding Factors Remains Hard

http://xkcd.com/247/

TSP-DECIDE = {<G, cost> : <G> encodes an undirected
graph with a positive distance attached to each of its edges
and G contains a Hamiltonian circuit whose total cost is
less than <cost>}.

An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8

9

23

40

10

4

7
3

28
30

2/16/2012

29

An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8

9

23

40

10

4

7
3

28
30

1. For i = 1 to |V| do:

Choose a vertex that hasn’t yet been chosen.

2. Check that the path defined by the chosen sequence

of vertices is a Hamiltonian circuit through G with

distance less than cost.

TSP-DECIDE, and other problems like it, share three

properties:

1. The problem can be solved by searching through a

space of partial solutions (such as routes). The size

of this space grows exponentially with the size of the

problem.

2. No better (i.e., not based on search) technique for

finding an exact solution is known.

3. But, if a proposed solution were suddenly to appear, it

could be checked for correctness very efficiently.

TSP and Other Problems Like It

