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MA/CSSE 474 
Theory of Computation

More and More Reduction Proofs

Proof that a language is not in SD

Given a Turing Machine M, is L(M) Regular?
H = {<M, w> : TM M halts on input string w}

R 

(Oracle) L2 = {<M> : L(M) is regular}

R(<M, w>) =
1. Construct M#(x):

1.1. Copy its input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape. 
1.4. Run M on w.

1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else reject.

2. Return <M#>.

Problem:
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But We Can Flip
R(<M, w>) =

1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Save x for later. 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else reject.

2. Return <M#>.

If Oracle decides L2, then C = ¬¬¬¬Oracle(R(<M, w>)) decides H: 
● <M, w> ∈ H: M# makes it to step 1.5.  Then it accepts x iff 

x ∈ AnBn.  So M# accepts AnBn, which is not regular.  
Oracle rejects.  C accepts.
● <M, w> ∉ H: M does not halt on w.  M# gets stuck in step 1.4.  

It accepts nothing.  L(M#) = ∅, which is regular.  
Oracle accepts.  C rejects.

But no machine to decide H can exist, so neither does Oracle. 

Or, Doing it Without Flipping 

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ AnBn then accept, else: 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
● C is correct: M# immediately accepts all strings in AnBn:  

● <M, w> ∈ H: M#  accepts everything else in step 1.5.  So
L(M#) = Σ*, which is regular.  Oracle accepts.

● <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing
else.   L(M#) = AnBn, which is not regular.  Oracle rejects.

But no machine to decide H can exist, so neither does Oracle. 
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Any Nonregular Language Will Work 

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ WW then accept, else: 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
● C is correct: M# immediately accepts all strings WW:  

● <M, w> ∈ H: M#  accepts everything else in step 1.5.  So
L(M#) = Σ*, which is regular.  Oracle accepts.

● <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing
else.   L(M#) = WW, which is not regular.  Oracle rejects.

But no machine to decide H can exist, so neither does Oracle. 

Is L(M) Context-free?

How about:    L3 = {<M> : L(M) is context-free}?

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ AnBnCn then accept, else: 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

Essentially the same proof as for L(M) regular
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1. Does program P, when running on x, halt?

2. Might P get into an infinite loop on some input?

3. Does P, when running on x, ever output a 0?  Or output 
anything at all?

4. Are P1 and P2 equivalent?

5. Does P, when running on x, ever assign a value to n?

6. Does P ever reach section S S on any input (in other words, 
can we
chop section S out?

7. Does P reach S on every input (in other words, can we 
guarantee that S happens)?

● Can the Patent Office check prior art?

● Can the CS department buy the definitive grading program?

Practical Impact of These Results

{<M, q> : M reaches q on some input}
HANY = {<M> : there exists some string on which TM M halts}

R 

(?Oracle) L2 = {<M, q> : M reaches q on some input}

R(<M>) = 
1. Build <M#> so that M# is identical to M except that, if M has a transition 

((q1, c1), (q2, c2, d)) and q2 is a halting state other than h, replace that  
transition with:

((q1, c1), (h, c2, d)).
2. Return <M#, h>.

If Oracle exists, then C = Oracle(R(<M>)) decides HANY:
● R can be implemented as a Turing machine.
● C is correct:  M# will reach the halting state h iff M would reach some 

halting state.  So:

● <M> ∈ HANY: There is some string on which M halts.  So there is some 
string on which M# reaches state h.  Oracle accepts.

● <M> ∉ HANY: There is no string on which M halts.  So there is no string 
on which M# reaches state h.  Oracle rejects.

But no machine to decide HANY can exist, so neither does Oracle. 

A good example, 
but the term is 
flying by, so we will 
skip it for now.
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Side Road with a purpose: 
obtainSelf

From Section 25.3:
In section 25.3, the author proves the existence of a very 

useful computable function: obtainSelf. When called as a 

subroutine by any Turing machine M, obtainSelf writes 

<M> onto M's tape.

Related to quines

Some quines

• main(){char q=34, n=10,*a="main() {char 

q=34,n=10,*a=%c%s%c; 

printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}

• ((lambda (x) (list x (list 'quote x)))

(quote (lambda (x) (list x (list 'quote x)))))

• Quine's paradox and a related sentence:

"Yields falsehood when preceded by its quotation" yields 

falsehood when preceded by its quotation.

"quoted and followed by itself is a quine." quoted and 

followed by itself is a quine. 



2/14/2012

6

There is an uncountable number of non-SD languages, but only a
countably infinite number of TM’s (hence SD languages). ∴The class
of non-SD languages is much bigger than that of SD languages!

Non-SD Languages

Intuition: Non-SD languages usually involve either infinite

search (where testing each potential member could loop 

forever) or determining whether the a TM will infinite 

loop.

Examples:

• ¬H = {<M, w> : TM M does not halt on w}.  

• {<M> : L(M) = Σ*}.  

• {<M> : TM M halts on nothing}.  

Non-SD Languages 
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● Contradiction

● L is the complement of an SD/D Language. 

● Reduction from a known non-SD language

Proving Languages are not SD 

Theorem: TMMIN = 
{<M>: Turing machine M is minimal} is not in SD.

Proof: If TMMIN were in SD, then there would exist some Turing 
machine ENUM that enumerates its elements.  Define the following 
Turing machine:

M#(x) =
1. Invoke obtainSelf to produce <M#>.
2. Run ENUM until it generates the description of some minimal 

Turing machine M′ whose description is longer than |<M#>|.
3. Invoke U on the string <M′, x>.

Since TMMIN is infinite, ENUM must eventually generate a string that 
is longer than |<M#>|.  So M# makes it to step 3 and thus M# is
Equivalent to M′ since it simulates M′.  But, since |<M#>| < |<M′>|, 

M′ cannot be minimal. 
But M#'s description was generated by ENUM.  Contradiction. 

Contradiction
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Suppose we want to know whether L is in SD and we know:

● ¬L is in SD, and

● At least one of L or ¬L is not in D.

Then we can conclude that L is not in SD, because, if it were,

it would force both itself and its complement into D, which we

know cannot be true.  

Example:

● ¬H (since ¬(¬H) = H is in SD and not in D)

The Complement of L is in SD/D

Aanbn contains strings that look like:

(q00,a00,q01,a00,→),
(q00,a01,q00,a10,→), 
(q00,a10,q01,a01,←), 
(q00,a11,q01,a10,←), 
(q01,a00,q00,a01,→), 
(q01,a01,q01,a10,→), 
(q01,a10,q01,a11,←), 
(q01,a11,q11,a01,←)

It does not contain strings like aaabbb.  

But AnBn does.

Aanbn = {<M> : L(M) = AnBn}
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What’s wrong with this proof that Aanbn is not in SD?

¬H     =  {<M, w> : TM M does not halt on w}

R 

(?Oracle) Aanbn =  {<M> : L(M) = AnBn}

R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.
1.4. Accept. 

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:

Aanbn = {<M> : L(M) = AnBn}

What about:    ¬H = {<M, w> : TM M does not halt on w}

R 

(?Oracle) Aanbn = {<M> : L(M) = AnBn}

R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as 
follows:

1.1 Copy the input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else loop. 

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:

Aanbn = {<M> : L(M) = AnBn} is not SD
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R(<M, w>) reduces  ¬H to Aanbn:
1. Construct the description <M#>:

1.1. If x ∈ AnBn then accept.  Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides ¬H:
M# immediately accepts all strings in AnBn.  If M does not halt on
w, those are the only strings M# accepts.  If M halts on w, 
M#  accepts everything:
● <M, w> ∈ ¬H: M does not halt on w, so M# accepts strings in

AnBn in step 1.1.  Then it gets stuck in step 1.4, so it accepts
nothing else.  It is an AnBn acceptor.  Oracle accepts.

● <M, w> ∉ ¬H: M halts on w, so M# accepts everything.  
Oracle does not  accept.

But no machine to semidecide ¬H can exist, so neither does Oracle. 

Aanbn = {<M> : L(M) = AnBn} is not SD

R(<M, w>) reduces  ¬H to Aanbn:
1. Construct the description <M#>:

1.1. If x ∈ AnBn then accept.  Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides ¬H:
M# immediately accepts all strings in AnBn.  If M does not halt on
w, those are the only strings M# accepts.  If M halts on w, 
M#  accepts everything:
● <M, w> ∈ ¬H: M does not halt on w, so M# accepts strings in

AnBn in step 1.1.  Then it gets stuck in step 1.4, so it accepts
nothing else.  It is an AnBn acceptor.  Oracle accepts.

● <M, w> ∉ ¬H: M halts on w, so M# accepts everything.  
Oracle does not  accept.

But no machine to semidecide ¬H can exist, so neither does Oracle. 

Aanbn = {<M> : L(M) = AnBn} is not SD
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What about: ¬H = {<M, w> : TM M does not halt on w}

R 

(?Oracle) HALL = {<M> : TM halts on Σ*}

Reduction Attempt 1: R(<M, w>) = 

1. Construct the description <M#>, where M#(x) 

operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

• If <M, w> ∈ ¬H: 

• If <M, w> ∉ ¬H:

HALL = {<M> : TM halts on ΣΣΣΣ*} 

¬H = {<M, w> : TM M does not halt on w}

R 

(?Oracle) HALL = {<M> : TM halts on Σ*}

Reduction Attempt 1: R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:
● <M, w> ∈ ¬H: M does not halt on w, so M# gets stuck in step 1.3 

and halts on nothing.  Oracle does not accept.
● <M, w> ∉ ¬H: M halts on w, so M# halts on everything.  

Oracle accepts.

There May Be No Easy Way to Flip
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R(<M, w>)  reduces  ¬H to HALL:
1. Construct the description <M#>, where M#(x) operates  as 
follows:

1.1. Copy the input x to another track for later. 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w for |x| steps or until M naturally halts.
1.5. If M naturally halted, then loop.
1.6. Else halt.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:
● <M, w> ∈ ¬H: No matter how long x is, M will not halt in |x|

steps.  So, for all inputs x, M# makes it to step 1.6.  So it 
halts on everything.  Oracle accepts.

● <M, w> ∉ ¬H: M halts on w in n steps.  On inputs
of length less than n, M# makes it to step 1.6 and halts.  
But on all  inputs of length n or greater, M# will loop in step
1.5.   Oracle does not accept.

HALL = {<M> : TM halts on ΣΣΣΣ*}

EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

We’ve already shown it’s not in D.  

Now we show it’s also not in SD.
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EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

¬H = {<M, w> : TM M does not halt on w}

R 

(?Oracle) EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

R(<M, w>) = 
1. Construct the description <M#>:

2. Construct the description <M?>:

3. Return <M#, M?>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:
● <M, w> ∈ ¬H: 
● <M, w> ∉ ¬H: 

EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

R(<M, w>) = 
1. Construct the description <M#>:

1.1 Erase the tape.     
1.2 Write w on the tape.
1.3 Run M on w.
1.4 Accept. 

2. Construct the description <M?>:
1.1 Loop.

3. Return <M#, M?>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H: M? 
halts on nothing.
● <M, w> ∈ ¬H: M does not halt on w, so M# gets stuck

in step 1.3 and halts on nothing.  Oracle accepts.
● <M, w> ∉ ¬H: M halts on w, so M# halts on 

everything.  Oracle does not  accept.
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IN SD OUT
Semideciding TM H  Reduction   
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexico. enum Reduction
L and ¬L in SD

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression                  a*b* Pumping

FSM Closure

Language Summary


