
2/14/2012

1

MA/CSSE 474
Theory of Computation

More and More Reduction Proofs

Proof that a language is not in SD

Given a Turing Machine M, is L(M) Regular?
H = {<M, w> : TM M halts on input string w}

R

(Oracle) L2 = {<M> : L(M) is regular}

R(<M, w>) =
1. Construct M#(x):

1.1. Copy its input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.

1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else reject.

2. Return <M#>.

Problem:

2/14/2012

2

But We Can Flip
R(<M, w>) =

1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Save x for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else reject.

2. Return <M#>.

If Oracle decides L2, then C = ¬¬¬¬Oracle(R(<M, w>)) decides H:
● <M, w> ∈ H: M# makes it to step 1.5. Then it accepts x iff

x ∈ AnBn. So M# accepts AnBn, which is not regular.
Oracle rejects. C accepts.
● <M, w> ∉ H: M does not halt on w. M# gets stuck in step 1.4.

It accepts nothing. L(M#) = ∅, which is regular.
Oracle accepts. C rejects.

But no machine to decide H can exist, so neither does Oracle.

Or, Doing it Without Flipping

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ AnBn then accept, else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
● C is correct: M# immediately accepts all strings in AnBn:

● <M, w> ∈ H: M# accepts everything else in step 1.5. So
L(M#) = Σ*, which is regular. Oracle accepts.

● <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing
else. L(M#) = AnBn, which is not regular. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

2/14/2012

3

Any Nonregular Language Will Work

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ WW then accept, else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
● C is correct: M# immediately accepts all strings WW:

● <M, w> ∈ H: M# accepts everything else in step 1.5. So
L(M#) = Σ*, which is regular. Oracle accepts.

● <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing
else. L(M#) = WW, which is not regular. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

Is L(M) Context-free?

How about: L3 = {<M> : L(M) is context-free}?

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ AnBnCn then accept, else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

Essentially the same proof as for L(M) regular

2/14/2012

4

1. Does program P, when running on x, halt?

2. Might P get into an infinite loop on some input?

3. Does P, when running on x, ever output a 0? Or output
anything at all?

4. Are P1 and P2 equivalent?

5. Does P, when running on x, ever assign a value to n?

6. Does P ever reach section S S on any input (in other words,
can we
chop section S out?

7. Does P reach S on every input (in other words, can we
guarantee that S happens)?

● Can the Patent Office check prior art?

● Can the CS department buy the definitive grading program?

Practical Impact of These Results

{<M, q> : M reaches q on some input}
HANY = {<M> : there exists some string on which TM M halts}

R

(?Oracle) L2 = {<M, q> : M reaches q on some input}

R(<M>) =
1. Build <M#> so that M# is identical to M except that, if M has a transition

((q1, c1), (q2, c2, d)) and q2 is a halting state other than h, replace that
transition with:

((q1, c1), (h, c2, d)).
2. Return <M#, h>.

If Oracle exists, then C = Oracle(R(<M>)) decides HANY:
● R can be implemented as a Turing machine.
● C is correct: M# will reach the halting state h iff M would reach some

halting state. So:

● <M> ∈ HANY: There is some string on which M halts. So there is some
string on which M# reaches state h. Oracle accepts.

● <M> ∉ HANY: There is no string on which M halts. So there is no string
on which M# reaches state h. Oracle rejects.

But no machine to decide HANY can exist, so neither does Oracle.

A good example,
but the term is
flying by, so we will
skip it for now.

2/14/2012

5

Side Road with a purpose:
obtainSelf

From Section 25.3:
In section 25.3, the author proves the existence of a very

useful computable function: obtainSelf. When called as a

subroutine by any Turing machine M, obtainSelf writes

<M> onto M's tape.

Related to quines

Some quines

• main(){char q=34, n=10,*a="main() {char

q=34,n=10,*a=%c%s%c;

printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}

• ((lambda (x) (list x (list 'quote x)))

(quote (lambda (x) (list x (list 'quote x)))))

• Quine's paradox and a related sentence:

"Yields falsehood when preceded by its quotation" yields

falsehood when preceded by its quotation.

"quoted and followed by itself is a quine." quoted and

followed by itself is a quine.

2/14/2012

6

There is an uncountable number of non-SD languages, but only a
countably infinite number of TM’s (hence SD languages). ∴The class
of non-SD languages is much bigger than that of SD languages!

Non-SD Languages

Intuition: Non-SD languages usually involve either infinite

search (where testing each potential member could loop

forever) or determining whether the a TM will infinite

loop.

Examples:

• ¬H = {<M, w> : TM M does not halt on w}.

• {<M> : L(M) = Σ*}.

• {<M> : TM M halts on nothing}.

Non-SD Languages

2/14/2012

7

● Contradiction

● L is the complement of an SD/D Language.

● Reduction from a known non-SD language

Proving Languages are not SD

Theorem: TMMIN =
{<M>: Turing machine M is minimal} is not in SD.

Proof: If TMMIN were in SD, then there would exist some Turing
machine ENUM that enumerates its elements. Define the following
Turing machine:

M#(x) =
1. Invoke obtainSelf to produce <M#>.
2. Run ENUM until it generates the description of some minimal

Turing machine M′ whose description is longer than |<M#>|.
3. Invoke U on the string <M′, x>.

Since TMMIN is infinite, ENUM must eventually generate a string that
is longer than |<M#>|. So M# makes it to step 3 and thus M# is
Equivalent to M′ since it simulates M′. But, since |<M#>| < |<M′>|,

M′ cannot be minimal.
But M#'s description was generated by ENUM. Contradiction.

Contradiction

2/14/2012

8

Suppose we want to know whether L is in SD and we know:

● ¬L is in SD, and

● At least one of L or ¬L is not in D.

Then we can conclude that L is not in SD, because, if it were,

it would force both itself and its complement into D, which we

know cannot be true.

Example:

● ¬H (since ¬(¬H) = H is in SD and not in D)

The Complement of L is in SD/D

Aanbn contains strings that look like:

(q00,a00,q01,a00,→),
(q00,a01,q00,a10,→),
(q00,a10,q01,a01,←),
(q00,a11,q01,a10,←),
(q01,a00,q00,a01,→),
(q01,a01,q01,a10,→),
(q01,a10,q01,a11,←),
(q01,a11,q11,a01,←)

It does not contain strings like aaabbb.

But AnBn does.

Aanbn = {<M> : L(M) = AnBn}

2/14/2012

9

What’s wrong with this proof that Aanbn is not in SD?

¬H = {<M, w> : TM M does not halt on w}

R

(?Oracle) Aanbn = {<M> : L(M) = AnBn}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.
1.4. Accept.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:

Aanbn = {<M> : L(M) = AnBn}

What about: ¬H = {<M, w> : TM M does not halt on w}

R

(?Oracle) Aanbn = {<M> : L(M) = AnBn}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as
follows:

1.1 Copy the input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else loop.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:

Aanbn = {<M> : L(M) = AnBn} is not SD

2/14/2012

10

R(<M, w>) reduces ¬H to Aanbn:
1. Construct the description <M#>:

1.1. If x ∈ AnBn then accept. Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides ¬H:
M# immediately accepts all strings in AnBn. If M does not halt on
w, those are the only strings M# accepts. If M halts on w,
M# accepts everything:
● <M, w> ∈ ¬H: M does not halt on w, so M# accepts strings in

AnBn in step 1.1. Then it gets stuck in step 1.4, so it accepts
nothing else. It is an AnBn acceptor. Oracle accepts.

● <M, w> ∉ ¬H: M halts on w, so M# accepts everything.
Oracle does not accept.

But no machine to semidecide ¬H can exist, so neither does Oracle.

Aanbn = {<M> : L(M) = AnBn} is not SD

R(<M, w>) reduces ¬H to Aanbn:
1. Construct the description <M#>:

1.1. If x ∈ AnBn then accept. Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides ¬H:
M# immediately accepts all strings in AnBn. If M does not halt on
w, those are the only strings M# accepts. If M halts on w,
M# accepts everything:
● <M, w> ∈ ¬H: M does not halt on w, so M# accepts strings in

AnBn in step 1.1. Then it gets stuck in step 1.4, so it accepts
nothing else. It is an AnBn acceptor. Oracle accepts.

● <M, w> ∉ ¬H: M halts on w, so M# accepts everything.
Oracle does not accept.

But no machine to semidecide ¬H can exist, so neither does Oracle.

Aanbn = {<M> : L(M) = AnBn} is not SD

2/14/2012

11

What about: ¬H = {<M, w> : TM M does not halt on w}

R

(?Oracle) HALL = {<M> : TM halts on Σ*}

Reduction Attempt 1: R(<M, w>) =

1. Construct the description <M#>, where M#(x)

operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

• If <M, w> ∈ ¬H:

• If <M, w> ∉ ¬H:

HALL = {<M> : TM halts on ΣΣΣΣ*}

¬H = {<M, w> : TM M does not halt on w}

R

(?Oracle) HALL = {<M> : TM halts on Σ*}

Reduction Attempt 1: R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:
● <M, w> ∈ ¬H: M does not halt on w, so M# gets stuck in step 1.3

and halts on nothing. Oracle does not accept.
● <M, w> ∉ ¬H: M halts on w, so M# halts on everything.

Oracle accepts.

There May Be No Easy Way to Flip

2/14/2012

12

R(<M, w>) reduces ¬H to HALL:
1. Construct the description <M#>, where M#(x) operates as
follows:

1.1. Copy the input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w for |x| steps or until M naturally halts.
1.5. If M naturally halted, then loop.
1.6. Else halt.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:
● <M, w> ∈ ¬H: No matter how long x is, M will not halt in |x|

steps. So, for all inputs x, M# makes it to step 1.6. So it
halts on everything. Oracle accepts.

● <M, w> ∉ ¬H: M halts on w in n steps. On inputs
of length less than n, M# makes it to step 1.6 and halts.
But on all inputs of length n or greater, M# will loop in step
1.5. Oracle does not accept.

HALL = {<M> : TM halts on ΣΣΣΣ*}

EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

We’ve already shown it’s not in D.

Now we show it’s also not in SD.

2/14/2012

13

EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

¬H = {<M, w> : TM M does not halt on w}

R

(?Oracle) EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

R(<M, w>) =
1. Construct the description <M#>:

2. Construct the description <M?>:

3. Return <M#, M?>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:
● <M, w> ∈ ¬H:
● <M, w> ∉ ¬H:

EqTMs = {<Ma, Mb> : L(Ma) = L(Mb)}

R(<M, w>) =
1. Construct the description <M#>:

1.1 Erase the tape.
1.2 Write w on the tape.
1.3 Run M on w.
1.4 Accept.

2. Construct the description <M?>:
1.1 Loop.

3. Return <M#, M?>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H: M?
halts on nothing.
● <M, w> ∈ ¬H: M does not halt on w, so M# gets stuck

in step 1.3 and halts on nothing. Oracle accepts.
● <M, w> ∉ ¬H: M halts on w, so M# halts on

everything. Oracle does not accept.

2/14/2012

14

IN SD OUT
Semideciding TM H Reduction
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexico. enum Reduction
L and ¬L in SD

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression a*b* Pumping

FSM Closure

Language Summary

