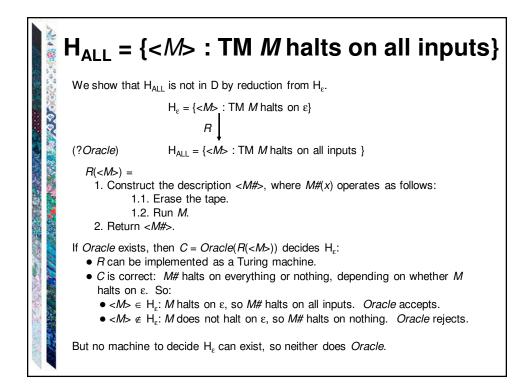




| The Problem View                                              | The Language View                                                                                 |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Does TM <i>M</i> halt on <i>w</i> ?                           | $H = \{  : M halts on w \}$                                                                       |
| Does TM <i>M</i> not halt on <i>w</i> ?                       | $\neg H = \{  : \\ M \text{ does not halt on } w \}$                                              |
| Does TM <i>M</i> halt on the empty tape?                      | $H_{\varepsilon} = \{  : M \text{ halts on } \varepsilon \}$                                      |
| Is there any string on which TM <i>M</i> halts?               | H <sub>ANY</sub> = {< <i>M</i> > : there exists at lea<br>one string on which TM <i>M</i> halts } |
| Does TM <i>M</i> accept all strings?                          | $A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$                                             |
| Do TMs $M_{\rm a}$ and $M_{\rm b}$ accept the same languages? | EqTMs =<br>$\{  : L(M_a) = L(M_b) \}$                                                             |
| Is the language that TM <i>M</i> accepts regular?             | $TMreg = { : L(M) is regular }$                                                                   |



## The Membership Question for TMs

We next define a new language:

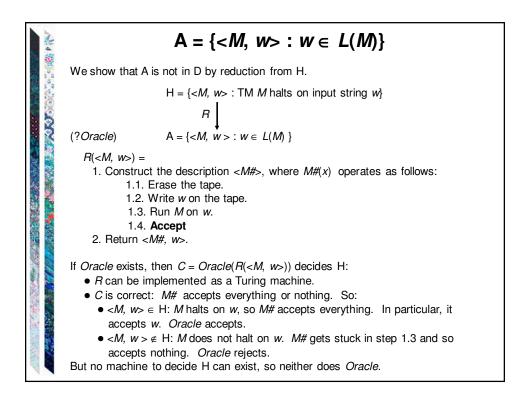
NAME OF A DESCRIPTION OF A

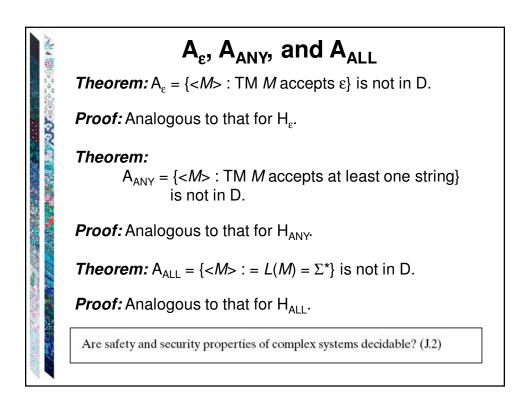
A CARACTER

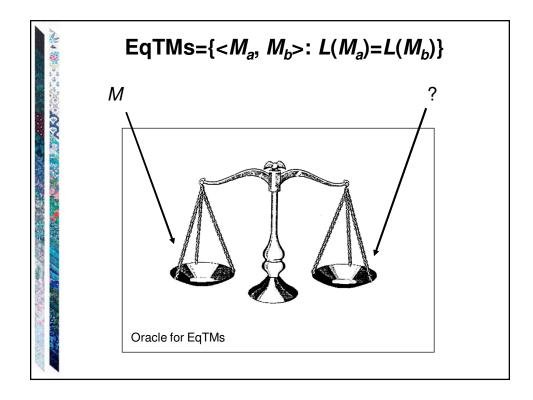
 $A = \{ < M, w > : M \text{ accepts } w \}.$ 

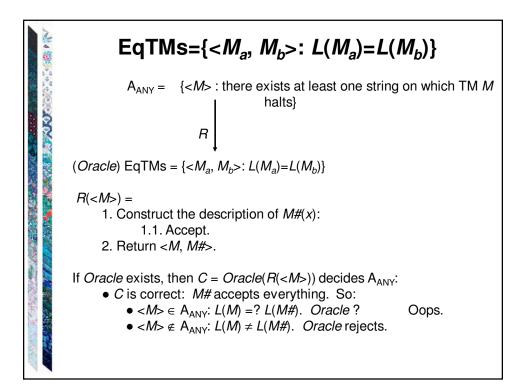
Note that A is different from H since it is possible that *M* halts but does not accept. An alternative definition of A is:

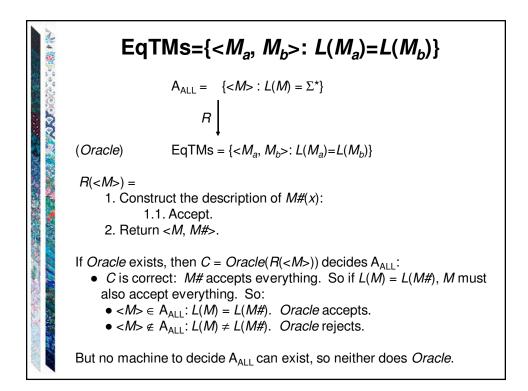
 $A = \{ < M, w > : w \in L(M) \}.$ 

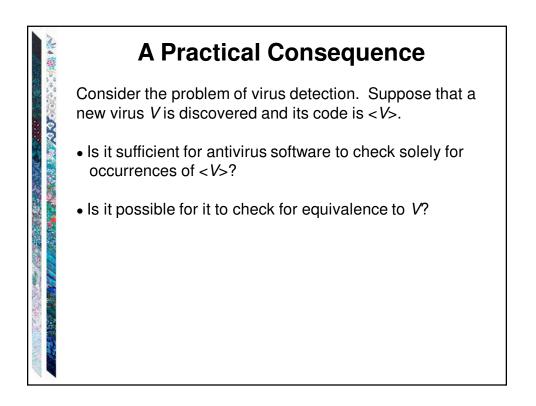














Recall that a mapping reduction from  $L_1$  to  $L_2$  is a computable function *f* where:

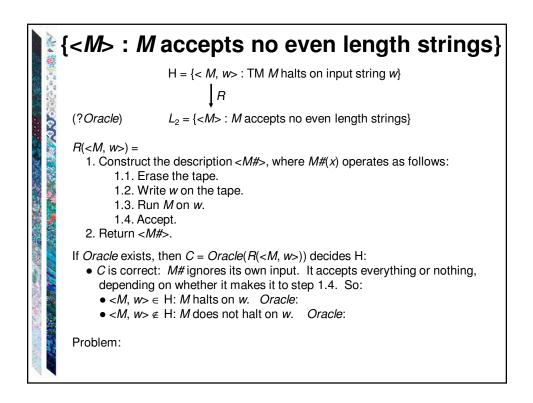
 $\forall x \in \Sigma^* \ (x \in L_1 \leftrightarrow f(x) \in L_2).$ 

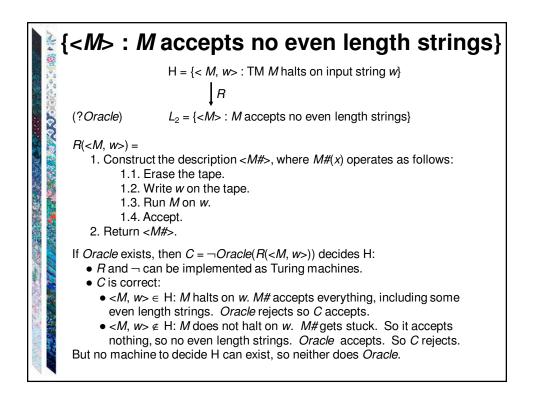
When we use a mapping reduction, we return:

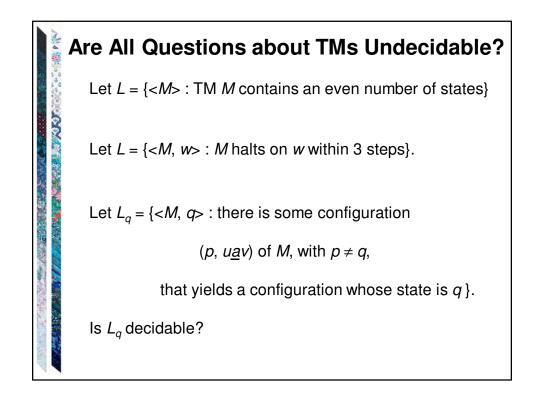
Oracle(f(x))

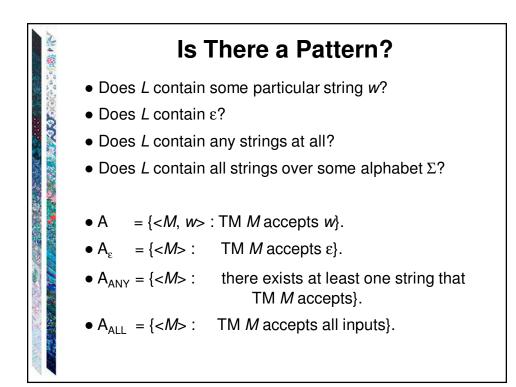
A STATE AND A STAT

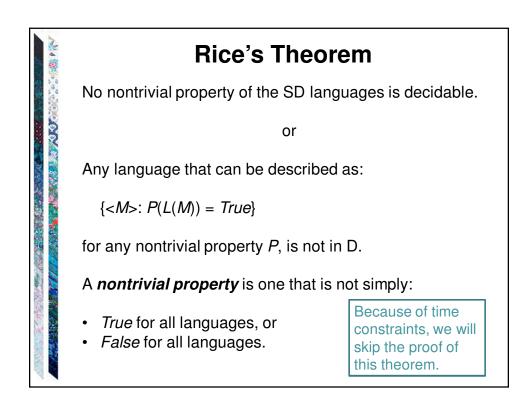
Sometimes we need a more general ability to use *Oracle* as a subroutine and then to do other computations after it returns.

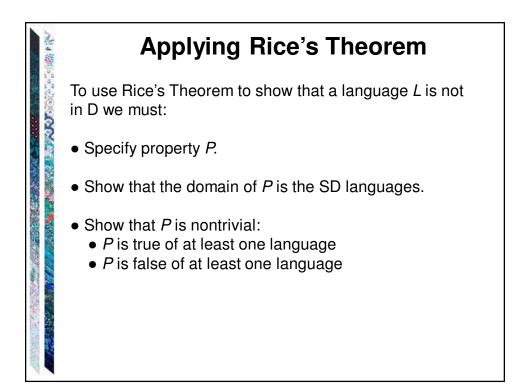


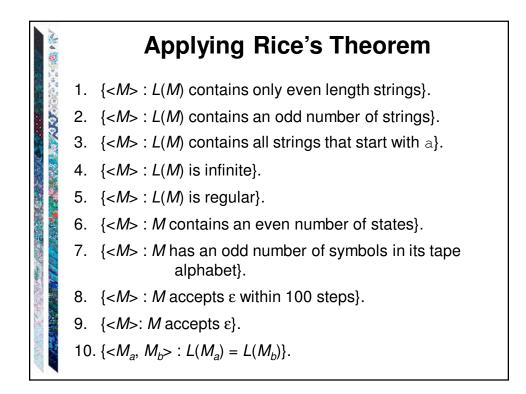


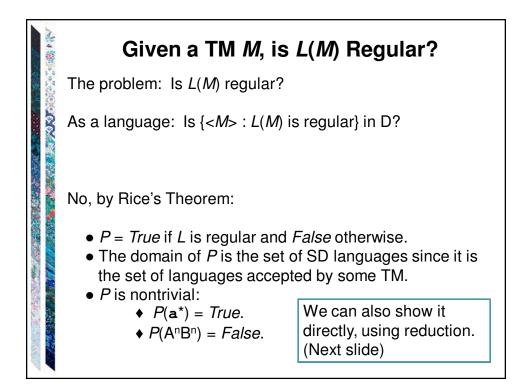


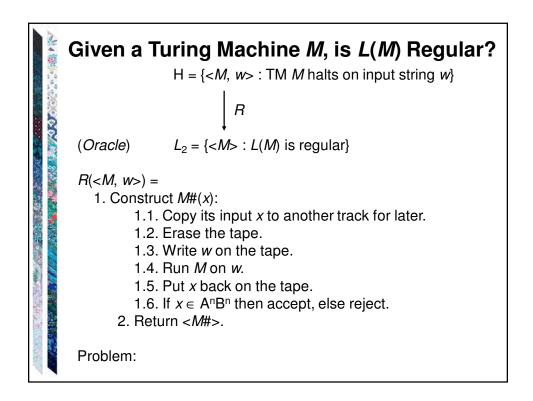




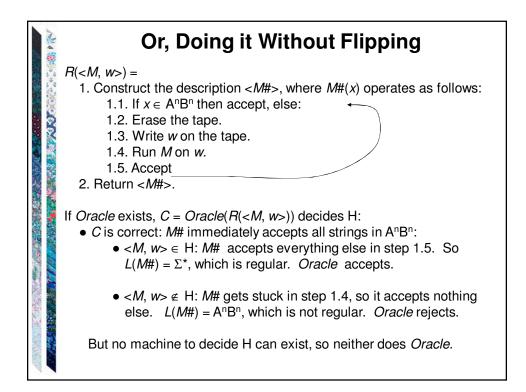


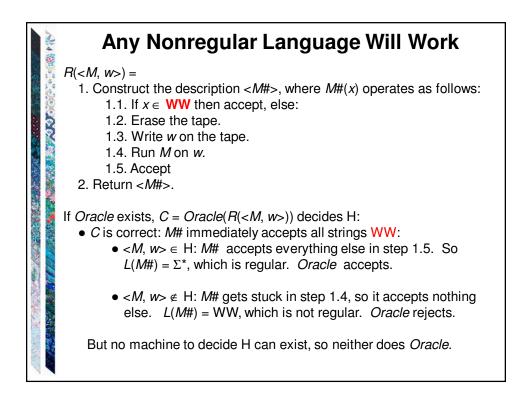


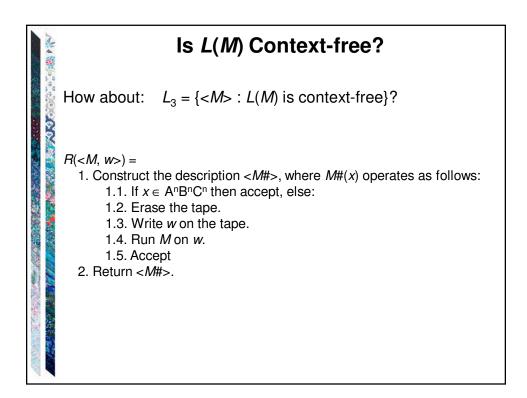


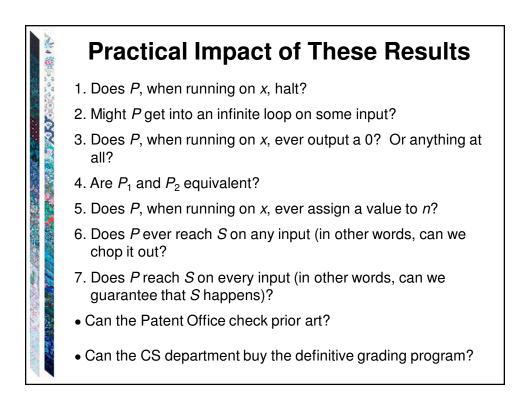


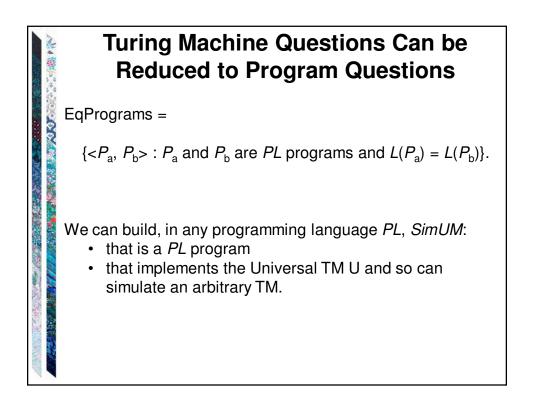
| Nº 4 | But We Can Flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | R( <m, w="">) = 1. Construct the description <math><m< math="">#&gt;, where <math>M</math>#(<math>x</math>) operates as follows:<br/>1.1. Save <math>x</math> for later.<br/>1.2. Erase the tape.<br/>1.3. Write <math>w</math> on the tape.<br/>1.4. Run <math>M</math> on <math>w</math>.<br/>1.5. Put <math>x</math> back on the tape.<br/>1.6. If <math>x \in A^nB^n</math> then accept, else reject.<br/>2. Return <math><m< math="">#&gt;.</m<></math></m<></math></m,>                                                               |
|      | <ul> <li>If Oracle decides L<sub>2</sub>, then C = ¬Oracle(R(<m, w="">)) decides H:</m,></li> <li><m, w=""> ∈ H: M# makes it to step 1.5. Then it accepts x iff x ∈ A<sup>n</sup>B<sup>n</sup>. So M# accepts A<sup>n</sup>B<sup>n</sup>, which is not regular. Oracle rejects. C accepts.</m,></li> <li><m, w=""> ∉ H: M does not halt on w. M# gets stuck in step 1.4. It accepts nothing. L(M#) = Ø, which is regular. Oracle accepts. C rejects.</m,></li> <li>But no machine to decide H can exist, so neither does Oracle.</li> </ul> |

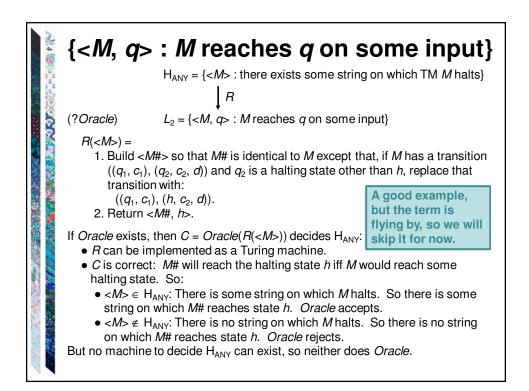












## Side Road with a purpose: obtainSelf

From Section 25.3: In section 25.3, the autho

In section 25.3, the author proves the existence of a very useful computable function: *obtainSelf*. When called as a subroutine by any Turing machine M, *obtainSelf* writes <M> onto M's tape.

Related to quines

ALL PLA

## Some quines

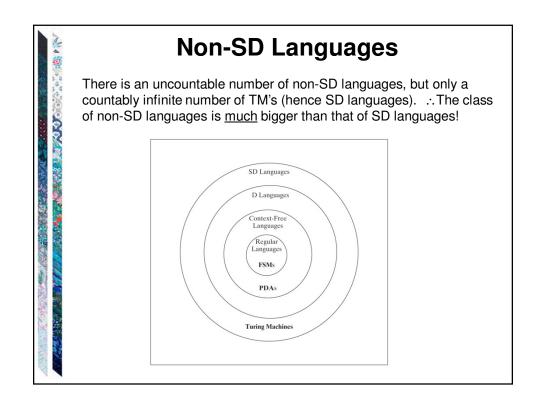
```
• main(){char q=34, n=10,*a="main() {char
q=34,n=10,*a=%c%s%c;
printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}
```

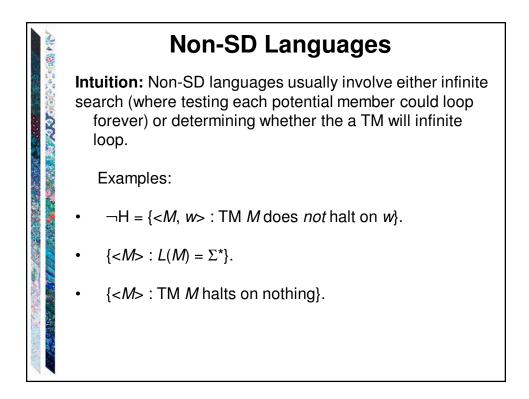
```
• ((lambda (x) (list x (list 'quote x)))
  (quote (lambda (x) (list x (list 'quote x)))))
```

• Quine's paradox and a related sentence:

"Yields falsehood when preceded by its quotation" yields falsehood when preceded by its quotation.

"quoted and followed by itself is a quine." quoted and followed by itself is a quine.







Contradiction

NY NY

- *L* is the complement of an SD/D Language.
- Reduction from a known non-SD language

