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MA/CSSE 474 
Theory of Computation

More Reduction Proofs

1. � Choose an undecidable language to reduce from.

2. � Define the reduction R.

3. Show that C (the composition of R with Oracle) is   

correct.

� indicates the choices that we make.

Recap: Steps in a Reduction Proof
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Undecidable Problems 
(Languages That Aren’t In D)

The Problem View The Language View

Does TM M halt on w? H = {<M, w> :

M halts on w}

Does TM M not halt on w? ¬H = {<M, w> :

M does not halt on w}

Does TM M halt on the empty tape? H
ε

= {<M> : M halts on ε}

Is there any string on which TM M halts? HANY = {<M> : there exists at least

one string on which TM M halts }

Does TM M accept all strings? AALL =   {<M> : L(M) = Σ*}

Do TMs Ma and Mb accept the same languages? EqTMs =

{<Ma, Mb> : L(Ma) = L(Mb)}

Is the language that TM M accepts regular? TMreg =

{<M>:L(M) is regular}

Tomorrow: We will prove some of these (most are also done in the book)

We show that HALL is not in D by reduction from Hε. 

Hε = {<M> : TM M halts on ε}

R 

(?Oracle) HALL = {<M> : TM M halts on all inputs }

R(<M>) = 

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Run M.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides Hε:

● R can be implemented as a Turing machine.

● C is correct:  M# halts on everything or nothing, depending on whether M

halts on ε.  So:

● <M> ∈ Hε: M halts on ε, so M# halts on all inputs.  Oracle accepts.

● <M> ∉ Hε: M does not halt on ε, so M# halts on nothing.  Oracle rejects.

But no machine to decide Hε can exist, so neither does Oracle. 

HALL = {<M> : TM M halts on all inputs}
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We next define a new language:

A = {<M, w> : M accepts w}.

Note that A is different from H since it is possible that M

halts but does not accept.  An alternative definition of A is:

A = {<M, w> : w ∈ L(M)}.

The Membership Question for TMs

We show that A is not in D by reduction from H. 

H = {<M, w> : TM M halts on input string w}

R 

(?Oracle) A = {<M, w > : w ∈ L(M) }

R(<M, w>) = 

1. Construct the description <M#>, where M#(x)  operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w. 

1.4. Accept
2. Return <M#, w>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

● R can be implemented as a Turing machine.

● C is correct:  M# accepts everything or nothing.  So:

● <M, w> ∈ H: M halts on w, so M# accepts everything.  In particular, it 

accepts w.  Oracle accepts.

● <M, w > ∉ H: M does not halt on w.  M# gets stuck in step 1.3 and so 

accepts nothing.  Oracle rejects.

But no machine to decide H can exist, so neither does Oracle. 

A = {<M, w> : w ∈∈∈∈ L(M)}
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Theorem: Aε = {<M> : TM M accepts ε} is not in D.  

Proof: Analogous to that for Hε.  

Theorem: 

AANY = {<M> : TM M accepts at least one string} 

is not in D.  

Proof: Analogous to that for HANY.  

Theorem: AALL = {<M> : = L(M) = Σ*} is not in D.  

Proof: Analogous to that for HALL. 

Aεεεε, AANY, and AALL

EqTMs={<Ma, Mb>: L(Ma)=L(Mb)}

Oracle for EqTMs

M ?
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AANY =    {<M> : there exists at least one string on which TM M 
halts}

R 

(Oracle) EqTMs = {<Ma, Mb>: L(Ma)=L(Mb)}

R(<M>) = 
1. Construct the description of M#(x):

1.1. Accept.
2. Return <M, M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides AANY:
● C is correct:  M# accepts everything.  So:

● <M> ∈ AANY: L(M) =? L(M#).  Oracle ? Oops.
● <M> ∉ AANY: L(M) ≠ L(M#).  Oracle rejects.

EqTMs={<Ma, Mb>: L(Ma)=L(Mb)}

AALL =    {<M> : L(M) = Σ*}

R 

(Oracle) EqTMs = {<Ma, Mb>: L(Ma)=L(Mb)}

R(<M>) = 
1. Construct the description of M#(x):

1.1. Accept.
2. Return <M, M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides AALL:
● C is correct:  M# accepts everything.  So if L(M) = L(M#), M must 

also accept everything.  So:
● <M> ∈ AALL: L(M) = L(M#).  Oracle accepts.
● <M> ∉ AALL: L(M) ≠ L(M#).  Oracle rejects.

But no machine to decide AALL can exist, so neither does Oracle. 

EqTMs={<Ma, Mb>: L(Ma)=L(Mb)}
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Consider the problem of virus detection.  Suppose that a

new virus V is discovered and its code is <V>.

● Is it sufficient for antivirus software to check solely for 

occurrences of <V>?

● Is it possible for it to check for equivalence to V?

A Practical Consequence

Recall that a mapping reduction from L1 to L2 is a 

computable function f where:

∀x∈Σ* (x ∈ L1 ↔ f(x) ∈ L2).

When we use a mapping reduction, we return:

Oracle(f(x))

Sometimes we need a more general ability to use Oracle

as a subroutine and then to do other computations after it

returns.

Sometimes Mapping Reducibility Isn’t Right
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H = {< M, w> : TM M halts on input string w}

R 

(?Oracle) L2 = {<M> : M accepts no even length strings}

R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape. 
1.2. Write w on the tape.
1.3. Run M on w.
1.4. Accept.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
● C is correct:  M# ignores its own input.  It accepts everything or nothing, 

depending on whether it makes it to step 1.4.  So:

● <M, w> ∈ H: M halts on w. Oracle:
● <M, w> ∉ H: M does not halt on w.    Oracle: 

Problem:   

{<M> : M accepts no even length strings}

H = {< M, w> : TM M halts on input string w}

R 

(?Oracle) L2 = {<M> : M accepts no even length strings}

R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape. 
1.2. Write w on the tape.
1.3. Run M on w.
1.4. Accept.  

2. Return <M#>.

If Oracle exists, then C = ¬Oracle(R(<M, w>)) decides H:
● R and ¬ can be implemented as Turing machines.
● C is correct:  

● <M, w> ∈ H: M halts on w. M# accepts everything, including some 
even length strings.  Oracle rejects so C accepts.

● <M, w> ∉ H: M does not halt on w.  M# gets stuck.  So it accepts
nothing, so no even length strings.  Oracle accepts.  So C rejects.

But no machine to decide H can exist, so neither does Oracle. 

{<M> : M accepts no even length strings}
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Let L = {<M> : TM M contains an even number of states}

Are All Questions about TMs Undecidable?

Let L = {<M, w> : M halts on w within 3 steps}. 

Let Lq = {<M, q> : there is some configuration

(p, uav) of M, with p ≠ q, 

that yields a configuration whose state is q }.  

Is Lq decidable? 

Is There a Pattern?

● Does L contain some particular string w?

● Does L contain ε?

● Does L contain any strings at all?

● Does L contain all strings over some alphabet Σ?

● A      = {<M, w> : TM M accepts w}.

● Aε = {<M> :      TM M accepts ε}.

● AANY = {<M> :      there exists at least one string that

TM M accepts}.

● AALL = {<M> :     TM M accepts all inputs}.
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Rice’s Theorem

No nontrivial property of the SD languages is decidable.

or

Any language that can be described as:

{<M>: P(L(M)) = True} 

for any nontrivial property P, is not in D.  

A nontrivial property is one that is not simply:

• True for all languages, or

• False for all languages.

Because of time 
constraints, we will 
skip the proof of 
this theorem.

Applying Rice’s Theorem

To use Rice’s Theorem to show that a language L is not 

in D we must:

● Specify property P.

● Show that the domain of P is the SD languages.

● Show that P is nontrivial:

● P is true of at least one language

● P is false of at least one language
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Applying Rice’s Theorem

1.   {<M> : L(M) contains only even length strings}.  

2.   {<M> : L(M) contains an odd number of strings}.

3.   {<M> : L(M) contains all strings that start with a}.

4.   {<M> : L(M) is infinite}.

5.   {<M> : L(M) is regular}.

6.   {<M> : M contains an even number of states}.

7.   {<M> : M has an odd number of symbols in its tape

alphabet}.

8.   {<M> : M accepts ε within 100 steps}.

9.   {<M>: M accepts ε}.

10. {<Ma, Mb> : L(Ma) = L(Mb)}.

Given a TM M, is L(M) Regular?

The problem:  Is L(M) regular?

As a language:  Is {<M> : L(M) is regular} in D?

No, by Rice’s Theorem:

● P = True if L is regular and False otherwise.

● The domain of P is the set of SD languages since it is

the set of languages accepted by some TM.

● P is nontrivial:
♦ P(a*) = True.

♦ P(AnBn) = False.

We can also show it 

directly, using reduction.

(Next slide)
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Given a Turing Machine M, is L(M) Regular?
H = {<M, w> : TM M halts on input string w}

R 

(Oracle) L2 = {<M> : L(M) is regular}

R(<M, w>) =
1. Construct M#(x):

1.1. Copy its input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape. 
1.4. Run M on w.

1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else reject.

2. Return <M#>.

Problem:

But We Can Flip
R(<M, w>) =

1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Save x for later. 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else reject.

2. Return <M#>.

If Oracle decides L2, then C = ¬¬¬¬Oracle(R(<M, w>)) decides H: 
● <M, w> ∈ H: M# makes it to step 1.5.  Then it accepts x iff 

x ∈ AnBn.  So M# accepts AnBn, which is not regular.  
Oracle rejects.  C accepts.
● <M, w> ∉ H: M does not halt on w.  M# gets stuck in step 1.4.  

It accepts nothing.  L(M#) = ∅, which is regular.  
Oracle accepts.  C rejects.

But no machine to decide H can exist, so neither does Oracle. 
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Or, Doing it Without Flipping 

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ AnBn then accept, else: 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
● C is correct: M# immediately accepts all strings in AnBn:  

● <M, w> ∈ H: M#  accepts everything else in step 1.5.  So
L(M#) = Σ*, which is regular.  Oracle accepts.

● <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing
else.   L(M#) = AnBn, which is not regular.  Oracle rejects.

But no machine to decide H can exist, so neither does Oracle. 

Any Nonregular Language Will Work 

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ WW then accept, else: 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
● C is correct: M# immediately accepts all strings WW:  

● <M, w> ∈ H: M#  accepts everything else in step 1.5.  So
L(M#) = Σ*, which is regular.  Oracle accepts.

● <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing
else.   L(M#) = WW, which is not regular.  Oracle rejects.

But no machine to decide H can exist, so neither does Oracle. 
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Is L(M) Context-free?

How about:    L3 = {<M> : L(M) is context-free}?

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. If x ∈ AnBnCn then accept, else: 
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept

2. Return <M#>.

1. Does P, when running on x, halt?

2. Might P get into an infinite loop on some input?

3. Does P, when running on x, ever output a 0?  Or anything at
all?

4. Are P1 and P2 equivalent?

5. Does P, when running on x, ever assign a value to n?

6. Does P ever reach S on any input (in other words, can we
chop it out?

7. Does P reach S on every input (in other words, can we 
guarantee that S happens)?

● Can the Patent Office check prior art?

● Can the CS department buy the definitive grading program?

Practical Impact of These Results
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Turing Machine Questions Can be 
Reduced to Program Questions

EqPrograms =

{<Pa, Pb> : Pa and Pb are PL programs and L(Pa) = L(Pb)}.

We can build, in any programming language PL, SimUM:  

• that is a PL program

• that implements the Universal TM U and so can 

simulate an arbitrary TM. 

{<M, q> : M reaches q on some input}
HANY = {<M> : there exists some string on which TM M halts}

R 

(?Oracle) L2 = {<M, q> : M reaches q on some input}

R(<M>) = 
1. Build <M#> so that M# is identical to M except that, if M has a transition 

((q1, c1), (q2, c2, d)) and q2 is a halting state other than h, replace that  
transition with:

((q1, c1), (h, c2, d)).
2. Return <M#, h>.

If Oracle exists, then C = Oracle(R(<M>)) decides HANY:
● R can be implemented as a Turing machine.
● C is correct:  M# will reach the halting state h iff M would reach some 

halting state.  So:

● <M> ∈ HANY: There is some string on which M halts.  So there is some 
string on which M# reaches state h.  Oracle accepts.

● <M> ∉ HANY: There is no string on which M halts.  So there is no string 
on which M# reaches state h.  Oracle rejects.

But no machine to decide HANY can exist, so neither does Oracle. 

A good example, 
but the term is 
flying by, so we will 
skip it for now.



2/13/2012

15

Side Road with a purpose: 
obtainSelf

From Section 25.3:
In section 25.3, the author proves the existence of a very 

useful computable function: obtainSelf. When called as a 

subroutine by any Turing machine M, obtainSelf writes 

<M> onto M's tape.

Related to quines

Some quines

• main(){char q=34, n=10,*a="main() {char 

q=34,n=10,*a=%c%s%c; 

printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}

• ((lambda (x) (list x (list 'quote x)))

(quote (lambda (x) (list x (list 'quote x)))))

• Quine's paradox and a related sentence:

"Yields falsehood when preceded by its quotation" yields 

falsehood when preceded by its quotation.

"quoted and followed by itself is a quine." quoted and 

followed by itself is a quine. 
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There is an uncountable number of non-SD languages, but only a
countably infinite number of TM’s (hence SD languages). ∴The class
of non-SD languages is much bigger than that of SD languages!

Non-SD Languages

Intuition: Non-SD languages usually involve either infinite

search (where testing each potential member could loop 

forever) or determining whether the a TM will infinite 

loop.

Examples:

• ¬H = {<M, w> : TM M does not halt on w}.  

• {<M> : L(M) = Σ*}.  

• {<M> : TM M halts on nothing}.  

Non-SD Languages 
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● Contradiction

● L is the complement of an SD/D Language. 

● Reduction from a known non-SD language

Proving Languages are not SD 

Theorem: TMMIN = 
{<M>: Turing machine M is minimal} is not in SD.

Proof: If TMMIN were in SD, then there would exist some Turing 
machine ENUM that enumerates its elements.  Define the following 
Turing machine:

M#(x) =
1. Invoke obtainSelf to produce <M#>.
2. Run ENUM until it generates the description of some Turing 

machine M′ whose description is longer than |<M#>|.
3. Invoke U on the string <M′, x>.

Since TMMIN is infinite, ENUM must eventually generate a string that 
is longer than |<M#>|.  So M# makes it to step 3 and thus M# is
Equivalent to M′ since it simulates M′.  But, since |<M#>| < |<M′>|, M′

cannot be minimal.  
But M#'s description was generated by ENUM.  Contradiction. 

Contradiction
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Suppose we want to know whether L is in SD and we know:

● ¬L is in SD, and

● At least one of L or ¬L is not in D.

Then we can conclude that L is not in SD, because, if it were,

it would force both itself and its complement into D, which we

know cannot be true.  

Example:

● ¬H (since ¬(¬H) = H is in SD and not in D)

The Complement of L is in SD/D

Aanbn contains strings that look like:

(q00,a00,q01,a00,→),
(q00,a01,q00,a10,→), 
(q00,a10,q01,a01,←), 
(q00,a11,q01,a10,←), 
(q01,a00,q00,a01,→), 
(q01,a01,q01,a10,→), 
(q01,a10,q01,a11,←), 
(q01,a11,q11,a01,←)

It does not contain strings like aaabbb.  

But AnBn does.

Aanbn = {<M> : L(M) = AnBn}
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What’s wrong with this proof that Aanbn is not in SD?

¬H     =  {<M, w> : TM M does not halt on w}

R 

(?Oracle) Aanbn =  {<M> : L(M) = AnBn}

R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.
1.4. Accept. 

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:

Aanbn = {<M> : L(M) = AnBn}

What about:    ¬H = {<M, w> : TM M does not halt on w}

R 

(?Oracle) Aanbn = {<M> : L(M) = AnBn}

R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as 
follows:

1.1 Copy the input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Put x back on the tape.
1.6. If x ∈ AnBn then accept, else loop. 

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides ¬H:

Aanbn = {<M> : L(M) = AnBn} is not SD
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R(<M, w>) reduces  ¬H to Aanbn:
1. Construct the description <M#>:

1.1. If x ∈ AnBn then accept.  Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run M on w.
1.5. Accept.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides ¬H:
M# immediately accepts all strings in AnBn.  If M does not halt on
w, those are the only strings M# accepts.  If M halts on w, 
M#  accepts everything:
● <M, w> ∈ ¬H: M does not halt on w, so M# accepts strings in

AnBn in step 1.1.  Then it gets stuck in step 1.4, so it accepts
nothing else.  It is an AnBn acceptor.  Oracle accepts.

● <M, w> ∉ ¬H: M halts on w, so M# accepts everything.  
Oracle does not  accept.

But no machine to semidecide ¬H can exist, so neither does Oracle. 

Aanbn = {<M> : L(M) = AnBn} is not SD


