

- A clear declaration of the reduction "from" and "to" languages. The "from" language should be a known undecidable language.
- A clear description of the reduction function R.

のこうとし

- If *R* does anything nontrivial, explain how it can be implemented as a TM.
- Note that machine diagrams are not necessary or even sufficient in these proofs. Use them as thought devices, where needed.
- Explain the logic that demonstrates how the "from" language is being decided by the composition of *R* and *Oracle*. You must do both accepting and rejecting cases.
- Declare that the reduction proves that your "to" language is not in D.

H_{ANY} = {<*M*> : there exists at least one string on which TM *M* halts}

Theorem: H_{ANY} is in SD.

のためために

Proof: by exhibiting a TM *T* that semidecides it.

What about simply trying all the strings in Σ^* one at a time until one halts?

Undecidable Problems (Languages That Aren't In D)	
The Problem View	The Language View
Does TM <i>M</i> halt on <i>w</i> ?	$H = \{ : M halts on w \}$
Does TM <i>M</i> not halt on <i>w</i> ?	$\neg H = \{ : \\ M \text{ does not halt on } w \}$
Does TM <i>M</i> halt on the empty tape?	$H_{\varepsilon} = \{ \langle M \rangle : M \text{ halts on } \varepsilon \}$
Is there any string on which TM <i>M</i> halts?	$H_{ANY} = \{ : \text{there exists at lead one string on which TM } M \text{ halts } \}$
Does TM <i>M</i> accept all strings?	$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$
Do TMs M_a and M_b accept the same languages?	EqTMs = { $: L(M_{a}) = L(M_{b})$ }
Is the language that TM <i>M</i> accepts regular?	$TMreg = \{:L(M) \text{ is regular}\}$
Tomorrow: We will prove some of these (most are also done in the book	