
2/3/2012

1

MA/CSSE 474
Theory of Computation

Reduction: Decidability and

Undecidability Proofs

Theorem: A language is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the
Turing machine that enumerates L. We use M as the basis
for a machine M' that semidecides L.

1. Copy input w on another tape.
2. Using M', Begin enumerating L. Each time an element of L is

enumerated, compare it to w. If they match, accept.

SD and Turing Enumerable

2/3/2012

2

Proof that SD implies Turing-enumerable:

If L ⊆ Σ* is in SD, then there is a Turing machine M that semidecides L.

A procedure E to enumerate all elements of L:

1. Enumerate all w ∈ Σ* lexicographically.
e.g., ε, a, b, aa, ab, ba, bb, …

2. As each is enumerated, use M to check it.

w3, w2, w1 ∈L? yes w
E

M

M'

But there is a problem with this …

The Other Direction

Solution: "Dovetail" the computations

Let L = L(M) for some TM M.

A procedure to enumerate all elements of L:

1. Enumerate all w ∈ Σ* lexicographically.

2. As each string wi is enumerated:

1. Start up a copy of M (call it Mi)with wi as its input.

2. Execute one step of each Mj (j < i),

excluding those Mj that have previously halted.

3. Whenever an Mi accepts, output wi.

*

2/3/2012

3

M lexicographically enumerates L iff M enumerates the

elements of L in lexicographic order.

A language L is lexicographically Turing-enumerable iff

there is a Turing machine that lexicographically

enumerates it.

Example: AnBnCn = {anbncn : n ≥ 0}

Lexicographic enumeration:

Lexicographic Enumeration

*

Theorem: A language is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing
machine that decides L.

Then M' lexicographically generates the strings in Σ* and
tests each using M.

Whenever M accepts wi, M' outputs wi.

Thus M' lexicographically enumerates L.

Lexicographically Enumerable = D

2/3/2012

4

Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates
L. Then, on input w, M' starts up M and waits until:
●M generates w (then M' accepts),
●M generates a string that comes after w (M' rejects), or
●M halts (so M' rejects).

Thus M' decides L.

Proof, Continued

IN SD OUT
Semideciding TM H Reduction
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexic. enum Reduction
L and ¬L in SD

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression a*b* Pumping

FSM Closure

Language Summary

2/3/2012

5

OVERVIEW OF REDUCTION

Reducing Decision Problem P1 to
another Decision Problem P2

We say that P1 is reducible to P2 (written P1 ≤ P2) if

• there is a Turing-computable function f that finds,
for an arbitrary instance I of P1, an instance f(I) of

P2, and

• f is defined such that for every instance I of P1,

I is a yes-instance of P1 if and only if

f(I) is a yes-instance of P2.

So P1 ≤ P2 means "if we have a TM that decides

P2, then there is a TM that decides P1.

2/3/2012

6

Example of Turing Reducibility

Let

• P1(n) = "Is the decimal integer n divisible by 4?"

• P2(n) = "Is the decimal integer n divisible by 2?"

• f(n) = n/2 (integer division, which is clearly

Turing computable)

Then P1(n) is "yes" iff

P2(n) is "yes" and P2(f(n)) is "yes" .

Thus P1 is reducible to P2, and we write P1 ≤ P2.

P2 is clearly decidable (is the last digit an element of

{0, 2, 4, 6, 8} ?), so P1 is decidable

Reducing Language L1 to L2

• L1 (over alphabet Σ1) is reducible to L2

(over alphabet Σ2) and we write L1 ≤ L2 if

there is a Turing-computable function
f : Σ1* → Σ2* such that

∀x ∈ Σ1*, x ∈ L1 if and only if f(x) ∈ L2

2/3/2012

7

Using reducibility

• If P1 is reducible to P2, then

– If P2 is decidable, so is P1.

– If P1 is not decidable, neither is P2.

• The second part is the one that we

will use most.

DETAILS OF REDUCTION

2/3/2012

8

More Examples of Reduction

● Theorem proving

Suppose that we want to establish Q(A) and that we have, as a
theorem:

∀x (R(x) ∧ S(x) ∧ T(x) → Q(x)).

Q(A)

R(A) S(A) T(A)

*

More Examples of Reduction

●Computing a function (where x and y are unary

representations of integers)

multiply(x, y) =

1. answer := ε.

2. For i := 1 to |y| do:

answer = concat (answer, x) .

3. Return answer.

So we reduce multiplication to addition.

2/3/2012

9

At each turn, a player chooses one pile and removes some sticks
from it.

The player who takes the last stick wins.

Problem: Is there a move that guarantees a win for the current
player?

Nim

Nim

● Obvious approach: search the

space of possible moves.

● Reduction to an XOR computation

problem:

100 1 10

101 1 01

010 0 11

011

● XOR them together:

♦ 0+ means state is losing for current player

♦ otherwise current player can win by making

a move that makes the XOR 0.

2/3/2012

10

Using Reduction for Undecidability
Theorem: There exists no general procedure to solve the following
problem:

Given an angle A, divide A into sixths using only a straightedge
and a compass.

Proof: Suppose that there were such a procedure, which we’ll call
sixth. Then we could trisect an arbitrary angle:

trisect(a: angle) =
1. Divide a into six equal parts by invoking sixth(a).
2. Ignore every other line, thus dividing a into thirds.

trisect(a)

sixth(a) ignore lines

sixth exists → trisect exists.

But we know that trisect does not exist. So:

*
http://en.wikipedia.org/wiki/Angle_trisection

Using Reduction for Undecidability

A reduction R from L1 to L2 is one or more Turing

machines such that:

If there exists a Turing machine Oracle that decides (or

semidecides) L2,

then the TMs in R can be composed with Oracle

to build a deciding (or semideciding) TM for L1.

P ≤ P′ means that P is reducible to P′.

2/3/2012

11

(R is a reduction from L1 to L2) ∧ (L2 is in D) → (L1 is in D)

If (L1 is in D) is false, then at least one of the two

antecedents of that implication must be false. So:

If (R is a reduction from L1 to L2) is true,

then (L2 is in D) must be false.

Using Reduction for Undecidability

Showing that L2 is not in D:

L1 (known not to be in D) L1 in D But L1 not in D

R

L2 (a new language whose if L2 in D So L2 not in D

decidability we are

trying to determine)

Using Reduction for Undecidability

2/3/2012

12

1. Choose a language L1:
● that is already known not to be in D, and
● that can be reduced to L2.

2. Define the reduction R.

3. Describe the composition C of R with Oracle.

4. Show that C does correctly decide L1 iff Oracle exists. We
do this by showing:
● R can be implemented by Turing machines,
● C is correct:
● If x ∈ L1, then C(x) accepts, and
● If x ∉ L1, then C(x) rejects.

To Use Reduction for Undecidability

Mapping Reductions

L1 is mapping reducible to L2 (L1 ≤M L2) iff there exists

some computable function f such that:

∀x∈Σ* (x ∈ L1 ↔ f(x) ∈ L2).

To decide whether x is in L1, we transform it, using f,

into a new object and ask whether that object is in L2.

Example:

DecideNIM(x) = XOR-solve(transform(x))

2/3/2012

13

1. Hεεεε is in SD. T semidecides it:

T(<M>) =

1. Run M on ε.

2. Accept.

T accepts <M> iff M halts on ε, so T semidecides Hε.

* Recall: "M halts on w" is a short way of saying "M, when

started with input w, eventually halts"

Consider Hεεεε = {<M> : TM M halts on εεεε} *

2. Theorem: Hεεεε = {<M> : TM M halts on εεεε} is not in D.

Proof: by reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) Hε {<M> : TM M halts on ε}

R is a mapping reduction from H to Hε:
R(<M, w>) =

1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.

2. Return <M#>.

Hεεεε = {<M> : TM M halts on εεεε}

*

2/3/2012

14

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

● C is correct: M# ignores its own input. It halts on everything or
nothing. So:
● <M, w> ∈ H: M halts on w, so M# halts on everything. In

particular, it halts on ε. Oracle accepts.
● <M, w> ∉ H: M does not halt on w, so M# halts on nothing and

thus not on ε. Oracle rejects.

Proof, Continued

A Block Diagram of C

2/3/2012

15

R must construct <M#> from <M, w>. Suppose w = aba.

M# will be:

So the procedure for constructing M# is:

1. Write:

2. For each character x in w do:
2.1. Write x.
2.2. If x is not the last character in w, write R.

3. Write L� M.

R Can Be Implemented as a Turing Machine

R can be implemented as a Turing machine.

C is correct.

So, if Oracle exists:

C = Oracle(R(<M, w>)) decides H.

But no machine to decide H can exist.

So neither does Oracle.

Conclusion

2/3/2012

16

If we could decide whether M halts on the specific string ε, we
could solve the more general problem of deciding whether M
halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we
could decide whether M halts on any one particular string.

But we used reduction to show that H undecidable implies
Hε undecidable; this is not at all obvious.

This Result is Somewhat Surprising

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) Hε {<M> : TM M halts on ε}

H contains strings of the form:
(q00,a00,q01,a10,←),(q00,a00,q01,a10,→),…,aaa

Hε contains strings of the form:
(q00,a00,q01,a10,←),(q00,a00,q01,a10,→),…

The language on which some M halts contains strings of some
arbitrary form, for example,

(letting Σ = {a, b}): aaaba

How Many Languages Are We Dealing With?

2/3/2012

17

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) Hε {<M> : TM M halts on ε}

R is a reduction from H to Hε:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.

2. Return <M#>.

● Oracle (the hypothesized machine to decide Hε).
● R (the machine that builds M#. Actually exists).
● C (the composition of R with Oracle).
● M# (the machine we will pass as input to Oracle). Note that we never run it.
● M (the machine whose membership in H we are interested in determining;

thus also an input to R).

How Many Machines Are We Dealing With?

A Block Diagram of C

2/3/2012

18

• A clear declaration of the reduction “from” and “to”
languages.

• A clear description of R.

• If R is doing anything nontrivial, argue that it can be
implemented as a TM.

• Note that machine diagrams are not necessary or even
sufficient in these proofs. Use them as thought devices,
where needed.

• Run through the logic that demonstrates how the “from”
language is being decided by the composition of R and
Oracle. You must do both accepting and rejecting
cases.

• Declare that the reduction proves that your “to” language
is not in D.

Important Elements in a Reduction Proof

// let L = {<M> | M is a TM that halts on epsilon}
// if L is decidable, let this function decide L:

bool HaltsOnEpsilon(TM M); // defined in magic.h

// HaltsOn decides H using HaltsOnEpsilon
// .: HaltsOn reduces to HaltsOnEpsilon as such:

bool HaltsOn(TM M, string w)
{// a nested TM
void Wrapper(string idontcare) {

M(w);
}

return HaltsOnEpsilon(Wrapper);
}

Another Way to View the Reduction

2/3/2012

19

The right way to use reduction to show that L2 is not in D:

1. Given that L1 is not in D, L1

2. Reduce L1 to L2, i.e., show how to solve L1

(the known one) in terms of L2 (the unknown one) L2

Doing it wrong by reducing L2 (the unknown one) to L1:

If there exists a machine M1 that solves H, then we could build a
machine that solves L2 as follows:

1. Return (M1(<M, ε>)).

This proves nothing. It’s an argument of the form:

If False then …

The Most Common Mistake:
Doing the Reduction Backwards

Theorem: HANY is in SD.

Proof: by exhibiting a TM T that semidecides it.

What about simply trying all the strings in Σ* one at a time

until one halts?

HANY = {<M> : there exists at least one
string on which TM M halts}

2/3/2012

20

T(<M>) =

1. Use dovetailing to try M on all of the elements of Σ*:

ε [1]
ε [2] a [1]
ε [3] a [2] b [1]
ε [4] a [3] b [2] aa [1]
ε [5] a [4] b [3] aa [2] ab [1]

2. If any instance of M halts, halt and accept.

T will accept iff M halts on at least one string. So T
semidecides HANY.

HANY is in SD

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) HANY = {<M> : there exists at least one string on which TM M halts}

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:

1.1. Examine x.
1.2. If x = w, run M on w, else loop.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
● R can be implemented as a Turing machine.
● C is correct: The only string on which M# can halt is w. So:

● <M, w> ∈ H: M halts on w. So M# halts on w. There exists at least one
string on which M# halts. Oracle accepts.

● <M, w> ∉ H: M does not halt on w, so neither does M#. So there exists
no string on which M# halts. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

HANY is not in D

2/3/2012

21

(Another R That Works)

Proof: We show that HANY is not in D by reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) HANY = {<M> : there exists at least one string on which TM M
halts}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
● C is correct: M# ignores its own input. It halts on everything or nothing. So:

● <M, w> ∈ H: M halts on w, so M# halts on everything. So it halts on at
least one string. Oracle accepts.

● <M, w> ∉ H: M does not halt on w, so M# halts on nothing. So it does not
halt on at least one string. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

1. � Choose an undecidable language to reduce from.

2. � Define the reduction R.

3. Show that C (the composition of R with Oracle) is

correct.

� indicates where we make choices.

The Steps in a Reduction Proof

2/3/2012

22

We show that HALL is not in D by reduction from Hε.

Hε = {<M> : TM M halts on ε}

R

(?Oracle) HALL = {<M> : TM M halts on all inputs }

R(<M>) =

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Run M.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides Hε:

● R can be implemented as a Turing machine.

● C is correct: M# halts on everything or nothing, depending on whether M

halts on ε. So:

● <M> ∈ Hε: M halts on ε, so M# halts on all inputs. Oracle accepts.

● <M> ∉ Hε: M does not halt on ε, so M# halts on nothing. Oracle rejects.

But no machine to decide Hε can exist, so neither does Oracle.

HALL = {<M> : TM M halts on all inputs}

