ok in S RY OSSR CT RS,
SR T i TR P SE T S

MA/CSSE 474
Theory of Computation

Reduction: Decidability and
Undecidability Proofs

(¥R

&

S e T A o e Ty
NN R AR R RTREAS

SD and Turing Enumerable

Theorem: Alanguage is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the
Turing machine that enumerates L. We use M as the basis
for a machine M'that semidecides L.

1. Copy input w on another tape.

2. Using M', Begin enumerating L. Each time an element of L is
enumerated, compare it to w. If they match, accept.

=w? ——— accept

e s W3, Wy, Wy

2/3/2012

2/3/2012

The Other Direction

Proof that SD implies Turing-enumerable:
. |t LcX*isin SD, then there is a Turing machine M that semidecides L.
¥ Aprocedure E to enumerate all elements of L:

1. Enumerate all we X* lexicographically.
e.g., & a, b, aa, ab, ba, bb, ...

2. As each is enumerated, use Mto check it.

Wy, Wy, Wy el? —yes—ow

But there is a problem with this ...

Q%?Solution: "Dovetail” the computations

(1]

s [2] a [1]

& [3] a [2] b [1]

& [4] a 3] b 2] aa [1]

e (5] a [4] m aa [2] ab [1]

€ [6] a [5] aa [3] ab (2] ba [1]

Let L = L(M) for some TM M.
A procedure to enumerate all elements of L:

1. Enumerate all we X* lexicographically.
2. As each string w; is enumerated:
1. Start up a copy of M (call it M;)with w; as its input.
2. Execute one step of each M, (j <),
excluding those M, that have previously halted.
3. Whenever an M, accepts, output w,

Lexicographic Enumeration

M lexicographically enumerates L iff M enumerates the
elements of L in lexicographic order.

Alanguage L is lexicographically Turing-enumerable iff
there is a Turing machine that lexicographically
enumerates it.

Example: A"B"C" = {a"o"c": n > 0}

Lexicographic enumeration:

Lexicographically Enumerable =D

Theorem: A language is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing
machine that decides L.

Then M'lexicographically generates the strings in £* and
tests each using M.

Whenever M accepts w;, M' outputs w;.

Thus M'lexicographically enumerates L.

2/3/2012

Proof, Continued

Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates
L. Then, on input w, M'starts up M and waits until:
e M generates w (then M'accepts),
e M generates a string that comes after w (M'rejects), or
e M halts (so M'rejects).

Thus M'decides L.

Language Summary

IN ouT
Semideciding TM Reduction
Enumerable
Unrestricted grammar
Deciding TM Diagonalize
Lexic. enum Reduction
Land —Lin SD

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure
Regular
Regular Expression a*b* Pumping
FSM Closure

2/3/2012

OVERVIEW OF REDUCTION

4

Y
s

3
e

Reducing Decision Problem P, to
another Decision Problem P,

We say that P1 is reducible to P, (written P, <P,) if

« there is a Turing-computable function f that finds,

for an arbitrary instance I of P, an instance f(I) of
P,, and

¢ &« fis defined such that for every instance I of Py,

I is a yes-instance of P, if and only if
f(I) is a yes-instance of P..

So P, < P,means "if we have a TM that decides
P,, then there is a TM that decides P,.

2/3/2012

2/3/2012

Example of Turing Reducibility

Let

* P,(n) ="Is the decimal integer n divisible by 47"
* P,(n) ="Is the decimal integer n divisible by 27"
» f(n) = n/2 (integer division, which is clearly

Turing computable)

: Then P4(n) is "yes" iff

. P,(n) is "yes" and P,(f(n)) is "yes" .

| Thus P, is reducible to P,, and we write P, < P..

P, is clearly decidable (is the last digit an element of
{0,2,4,6, 8} 7), so P, is decidable

L, (over alphabet X,) is reducible to L,
(over alphabet X,) and we write L, < L, if

there is a Turing-computable function
f: X" — X,* such that
vx e X%, xe L, ifandonly if f(x) € L,

o o
‘

A

| Using reducibility
! 3 If P, is reducible to P,, then
" —If P, is decidable, so is P;.

e,

E
"% —If P, is not decidable, neither is P,.

i+ The second part is the one that we
8 will use most.

DETAILS OF REDUCTION

2/3/2012

N

< More Examples of Reduction

e Theorem proving

" Suppose that we want to establish Q(A) and that we have, as a
'% theorem:

Q(A)
R(A) S(A) T(A)

More Examples of Reduction

« Computing a function (where x and y are unary
representations of integers)

multiply(x, y) =
1. answer = €.
2. Fori:=1to|y| do:
answer = concat (answer, x) .
3. Return answer.

So we reduce multiplication to addition.

2/3/2012

AT

5 " _»‘_E.—;.l :»;-‘:_‘;-.v"' 3SR SPEED
ARSI N R A AR R TR e e

Nim

At each turn, a player chooses one pile and removes some sticks
from it.

The player who takes the last stick wins.

Problem: Is there a move that guarantees a win for the current
player?

P

e _»‘_E.—;.l T R R SPEED
ARSI N A IR B TR e e

Nim
— e Obvious approach: search the
—_ — space of possible moves.

_— — e Reduction to an XOR computation

_— — — problem:
100 1 10
101 1 01
010 0 11
011

e XOR them together:
+ 0+ means state is losing for current player
¢ otherwise current player can win by making
a move that makes the XOR 0.

2/3/2012

Using Reduction for Undecidability

Theorem: There exists no general procedure to solve the following
problem:

Given an angle A, divide A into sixths using only a straightedge
and a compass.

Proof: Suppose that there were such a procedure, which we’ll call
sixth. Then we could trisect an arbitrary angle:

trisect(a: angle) =
1. Divide ainto six equal parts by invoking sixth(a).
2. Ignore every other line, thus dividing a into thirds.

trisect(a)

sixth(Mn\qre lines

sixth exists — trisect exists.

But we know that trisect does not exist. So:

http://en.wikipedia.org/wiki/Angle_trisection

Using Reduction for Undecidability

A reduction R from L, to L, is one or more Turing
machines such that:

If there exists a Turing machine Oracle that decides (or

semidecides) L,,
then the TMs in R can be composed with Oracle
to build a deciding (or semideciding) TM for L,.

P < P means that P is reducible to P

2/3/2012

10

s

Using Reduction for Undecidability

(Ris areduction from L, to L,) A (L, isin D) — (L, isin D)

If (L, is in D) is false, then at least one of the two
antecedents of that implication must be false. So:

If (R is a reduction from L, to L,) is true,
then (L, is in D) must be false.

W P

Using Reduction for Undecidability

Showing that L, is not in D:

L, (knownnottobeinD) L;inD But L, notin D
7| I
L, (anew language whose if L,inD So L, notin D

decidability we are
trying to determine)

2/3/2012

11

To Use Reduction for Undecidability

1. Choose a language L;:
o that is already known not to be in D, and
o that can be reduced to L,.

2. Define the reduction R.
3. Describe the composition C of R with Oracle.

4. Show that C does correctly decide L, iff Oracle exists. We
do this by showing:
¢ R can be implemented by Turing machines,
e Cis correct:
o If xe Ly, then C(x) accepts, and
o lf x& Ly, then C(X) rejects.

Mapping Reductions

L, is mapping reducible to L, (L, <, L,) iff there exists
some computable function fsuch that:

VxeX* (xe L, < f(x) e Ly).

& To decide whether xis in L, we transform it, using f,

into a new object and ask whether that object is in L.
{ & Example:

DecideNIM(x) = XOR-solve(transform(x))

2/3/2012

12

-Consider H, = {<M> : TM M halts on €} *
. 1.H,isin SD. Tsemidecides it:
T(<M>) =

1. Run Mone.
2. Accept.

T accepts <M> iff M halts on €, so T semidecides H..

* Recall: "M halts on w" is a short way of saying "M, when
started with input w, eventually halts"

H. = {<M> : TM M halts on €}

2. Theorem:H, = {<M>: TM M halts on €} is not in D.
Proof: by reduction from H:
H = {<M, w> : TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on €}

R is a mapping reduction from H to H,:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run Mon w.
2. Return <M#>.

2/3/2012

13

Proof, Continued

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run Mon w.
2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

e Cis correct: M#ignores its own input. It halts on everything or
nothing. So:
e <M, w> e H: Mhalts on w, so M# halts on everything. In
particular, it halts on €. Oracle accepts.
e <M, w> ¢ H: Mdoes not halt on w, so M# halts on nothing and
thus not on €. Oracle rejects.

A Block Diagram of C

<M, w>

| Accept

\

build M# M# Is M#in H,?

/

> Reject
R Oracle

2/3/2012

14

R Can Be Implemented as a Turing Machine

R must construct <M#> from <M, w>. Suppose w = aba.
M# will be:

So the procedure for constructing M# is:

1. Write: ~r -0 0

2. For each character xin wdo:

2.1. Write x.

2.2. If xis not the last character in w, write R.
3. Write L M.

Conclusion
R can be implemented as a Turing machine.
Cis correct.
So, if Oracle exists:
C = Oracle(R(<M, w>)) decides H.
But no machine to decide H can exist.

So neither does Oracle.

2/3/2012

15

2/3/2012

This Result is Somewhat Surprising

If we could decide whether M halts on the specific string €, we
could solve the more general problem of deciding whether M
halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we
could decide whether M halts on any one particular string.

But we used reduction to show that H undecidable implies
H. undecidable; this is not at all obvious.

- How Many Languages Are We Dealing With?
H = {<M, w> : TM M halts on input string w}

R
(?0racle) H, {<M>: TM M halts on €}

H contains strings of the form:
(g00,a200,901,a10,«),(g00,a00,g01,a10,-),...,aaa

H, contains strings of the form:
(g00,a00,901,a10,«),(g00,a00,g01,a10,-),...

The language on which some M halts contains strings of some
arbitrary form, for example,

(letting X = {a, b}): aaaba

16

How Many Machines Are We Dealing With?

H = {<M, w> : TM M halts on input string w}

R I
(?Oracle) He {<M>:TM M halts on &}

Ris a reduction from H to He:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
2. Return <M#>.

e Oracle (the hypothesized machine to decide H,).

e R (the machine that builds M#. Actually exists).

e C (the composition of R with Oracle).

e M# (the machine we will pass as input to Oracle). Note that we never run it.

e M (the machine whose membershipin H we are interested in determining;
thus also an input to R).

A Block Diagram of C

<M, w>

|_» Accept

\

build M# M# Is M#in H,?

/

> Reject
R Oracle

2/3/2012

17

2/3/2012

: Important Elements in a Reduction Proof

k. A clear declaration of the reduction “from” and “to”
languages.

» A clear description of R.

|« If Ris doing anythinﬁﬂnontrivial, argue that it can be
implemented as a TM.

S . Note that machine diagrams are not necessary or even
: sufficient in these proofs. Use them as thought devices,
where needed.

‘8 . Run through the logic that demonstrates how the “from”
language is being decided by the composition of R and
Oracle. You must do both accepting and rejecting
cases.

» Declare that the reduction proves that your “to” language
is notin D.

Another Way to View the Reduction

/l'let L = {<M> | M is a TM that halts on epsilon}
//'if L is decidable, let this function decide L:

bool HaltsOnEpsilon(TM M); // defined in magic.h

// HaltsOn decides H using HaltsOnEpsilon
/.- HaltsOn reduces to HaltsOnEpsilon as such:

bool HaltsOn(TM M, string w)
{// anested TM
void Wrapper(string idontcare) {
M(w);
}
return HaltsOnEpsilon(Wrapper);

}

18

2/3/2012

The Most Common Mistake:
Doing the Reduction Backwards

The right way to use reduction to show that L, is not in D:

1. Giventhat L, is not in D, L,
2. Reduce L, to L,, i.e., show how to solve L, |
(the known one) in terms of L, (the unknown one) L,

Doing it wrong by reducing L, (the unknown one) to L;:

If there exists a machine M, that solves H, then we could build a
machine that solves L, as follows:

1. Return (M;(<M, &>)).
This proves nothing. It's an argument of the form:

If False then ...

Hany = {<M> : there exists at least one
string on which TM M halts}

Theorem: H,yy is in SD.
Proof: by exhibitinga TM T that semidecides it.

What about simply trying all the strings in X* one at a time
until one halts?

19

ARSI R R T R R SRR e

Hayy is in SD

T(<Ms) =

1. Use dovetailing to try M on all of the elements of £*:

e [1]

e [2] a [1]

e [3] a [2] b [1]

e [4] a [38] b [2] aa [1]

e [5] a [4] b _[3] aa [2] ab [1]

2. If any instance of M halts, halt and accept.

T will accept iff M halts on at least one string. So T
semidecides Hany

3
¥
)

3

-]
)
e

T T S SRR

PR

Hayyy iSsnotin D

H = {<M, w> : TM M halts on input string w}
R
(?Oracle) Hany = {<M> : there exists at least one string on which TM M halts}

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Examine x.
1.2.1f x= w, run Mon w, else loop.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
e [can be implemented as a Turing machine.
e Cis correct: The only string on which M# can haltis w. So:
o <M, w> e H: Mhaltson w. So M#halts on w. There exists at least one
string on which M# halts. Oracle accepts.
o <M, w> ¢ H: Mdoes not halt on w, so neither does M#. So there exists
no string on which M# halts. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

2/3/2012

20

(Another R That Works)

Proof: We show that Hayy is not in D by reduction from H:
H = {<M, w> : TM M halts on input string w}
R

(?O0racle) Hany = {<M> : there exists at least one string on which TM M
halts}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
e Cis correct: M#ignores its own input. It halts on everything or nothing. So:
o <M, w> e H: M halts on w, so M# halts on everything. So it halts on at
least one string. Oracle accepts.
e <M, w> ¢ H: Mdoes not halt on w, so M# halts on nothing. So it does not
halt on at least one string. Oracle rejects.
But no machine to decide H can exist, so neither does Oracle.

The Steps in a Reduction Proof
1. & Choose an undecidable language to reduce from.
2. & Define the reduction R.
3. Show that C (the composition of R with Oracle) is

correct.

& indicates where we make choices.

2/3/2012

21

2/3/2012

- Hy, = {<M> : TM M halts on all inputs}

We show that Hp is not in D by reduction from H,.
H, = {<M> : TM M halts on ¢}
R
(?Oracle) Ha = {<M> : TM M halts on all inputs }

R(<M>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Run M.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides H,:
e R can be implemented as a Turing machine.
e Cis correct: M# halts on everything or nothing, depending on whether M
halts on €. So:
® <> e H.: Mhalts on €, so M# halts on all inputs. Oracle accepts.
® <> ¢ H.: Mdoes not halt on €, so M# halts on nothing. Oracle rejects.

But no machine to decide H, can exist, so neither does Oracle.

22

