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MA/CSSE 474
Theory of Computation

The Halting Problem

HW 12 due tomorrow, 
13 Monday,
14 next Thursday

Claude out of town Wednesday
No class meeting on Thursday

Key ideas so far  - 1
• Let ΣU be 

{(, ), a, q, y, n, 0, 1, comma, →, ←}, 

ordered as listed

• Any TM M may be encoded as a string 
<M> over alphabet ΣU

• A TM T may take as input <M1>, an 
encoding of one TM M1, and produce as 
output <M2>, an encoding of TM M2
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Key ideas so far - 2
• We can lexicographically enumerate:

– All TM encodings

– All TM encodings with a given input alphabet

– All TM encodings with a given input alphabet 

and a given tape alphabet

• For any TM M and any string w over M's 
input alphabet, we can encode the pair 
M, w as a single string <M, w>

• There is a universal TM U with input 
alphabet ΣU.

Key ideas so far 3
• There is a universal TM U whose input 

alphabet is ΣU.

• If U is started with input <M,w>, it simulates 
the behavior of M, started with input w:

– If M does not halt, U does not halt

– If M halts and accepts, so does U

– If M halts and rejects, so does U

– If M is a "function computing" TM, 

U leaves the same string on the tape as M, 

so that U(<M, w>) = M(w)

• Church-Turing Thesis:
"Computable" is equivalent to "computable by a 

Turing machine"
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Recap: D and SD

● A TM M with input alphabet Σ decides a language L ⊆ Σ* iff, 
for any string w ∈ Σ*,

● if w ∈ L then M accepts w, and
● if w ∉ L then M rejects w.

A language L is decidable (an element of D) iff there is a 
Turing machine M that decides it.  

● A TM M with input alphabet Σ semidecides L iff for any string 
w ∈ Σ*,

● if w ∈ L then M accepts w
● if w ∉ L then M does not accept w.  M may reject or loop.

A language L is semidecidable (an element of SD) iff there is a 
Turing

machine that semidecides it. 

Defining the Universe

What is the complement of:

•AnBn = {anbn : n ≥ 0}

Depends on the universe: 

That universe may be {a, b}*, or even {a, b, c, d}*, or 

could be {akbm}

•{<M, w> : TM M halts on input string w}

Universe may be ΣU*, or could be 

{<M, w> : M is a TM and w is a string over M's input alphabet}
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Defining the Universe

L1 = {<M, w> : TM M halts on input string w}.
L2 = {<M> : M doesn't halt on any input string}.
L3 = {<Ma, Mb> : Ma and Mb halt on the same strings}.

For a string w to be in L1, it must:
● be syntactically well-formed.
● encode a machine M and a string w such that M halts 

when started on w.

Define the universe from which we are drawing strings to 
contain only those strings that meet the syntactic 
requirements of the language definition. 

This convention has no impact on the decidability of any of 
these languages since the set of syntactically valid strings is 
clearly in D.

Our earlier definition:

¬L1 =  {x: x is not a syntactically well formed <M, w> pair}
∪

{<M, w> : TM M does not halt on input string w}.

We will use a different definition:

Define the complement of any language L whose member 
strings include at least one Turing machine description to be 
with respect to a universe of strings that are of the same 
syntactic form as L.  

Now we have:

¬L1 = {<M, w> : TM M does not halt on input string w}.

A Different Definition of Complement

Q1
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The Language H

Theorem:  The language: 

H = {<M, w> : TM M halts on input string w} 

● is semidecidable, but

● is not decidable.

Proof soon!

Q2

Does This Program Always Halt?

times3(x: positive integer) = 

while x ≠ 1 do:

if x is even then x = x/2.

else x = 3x + 1

times3(25) …

max = 100000

maxCount = 0
for i in range(1, max+1):

current = i
count = 0

while current != 1:

count += 1
if current % 2 == 0:

current /= 2
else:

current = 3 * current + 1

print "%7d %7d" % (i, count)
if count > maxCount:

maxCount = count

print "maxCount = ", maxCount

Lothar Collatz, 1937, conjectured 
that times3 halts for all positive 
integers n.  Still an open problem.

Paul Erdős: "Mathematics is not 
yet ready for such confusing, 
troubling, and hard problems." 

http://mathworld.wolfram.com/Collatz
Problem.html

Q3
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H is Semidecidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w}

is semidecidable.  

Proof: The TM MH semidecides H:

MH(<M, w>) = 

1. Run M on w.

MH halts iff M halts on w.  Thus MH semidecides H. 

Q4

The Undecidability of the Halting Problem

Lemma: The language:

H = {<M, w> : TM M halts on input string w} 

is not decidable.

Proof: If H were decidable, then some TM MH would 

decide it.  MH would implement the specification:

halts(<M, w>) =

if <M> is a Turing machine description 

and M halts on input w

then accept.  

else reject.
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Trouble [in (Wabash) River City)]

Trouble(x: string) =
if halts(<x, x>) then loop forever, else halt.

If there is an MH that computes the function halts, Trouble exists: 

Consider halts(<Trouble, Trouble>):  
● If halts reports that Trouble(<Trouble>) halts, Trouble loops.
● But if halts reports that Trouble(<Trouble>) does not halt, then 

Trouble halts.

Recall that C# makes a 
copy of the non-blank 
characters on the tape.

Note that it is important 
to this proof  that Trouble 
be constructible from MH

Q5-6

● Lexicographically enumerate Turing machine encodings and input 
strings.

● Let 1 mean halting, blank mean non halting.

Viewing the Halting Problem as Diagonalization

i
1

i
2

i
3

… <Trouble> …

<machine
1
> 1

machine
2
> 1

machine
3
> 1

… 1

<Trouble> 1 1

… 1 1 1

… 1

If MH exists and decides membership in H, it must be 
able to correctly fill in any cell in this table.

What about the shaded square?
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If  H were in D, then SD would equal D

Theorem: If H were in D then every SD language would be in D.

Proof: Let L be any SD language.  There exists a TM ML that 
semidecides it. The following machine M' decides whether w is in 

L(ML):

Recall: H = {<M, w> : TM M halts on input string w}

We know that H∈SD.  If H were also in D, then there 

would exist a TM O that decides it.  

Q7

M'(w: string) = 
1. Run O on <ML, w>. (O will always halt)
2. If O accepts (i.e., ML will halt on input w), then:

2.1. Run ML on w.
2.2. If it accepts, accept.  Else reject.

3. Else reject.

Recap: The Entscheidungsproblem

From Wikipedia: The Entscheidungsproblem ("decision 
problem", David Hilbert 1928) asks for an algorithm that will 
take as input a description of a formal language and a 
mathematical statement in the language, and produce as 
output either "True" or "False" according to whether the 
statement is true or false. 

The algorithm need not justify its answer, nor provide a 
proof, so long as it is always correct.
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Back to the Entscheidungsproblem

Theorem: The Entscheidungsproblem is unsolvable.

Proof: (Due to Turing)
1. If we could solve the problem of determining whether a given Turing 

machine ever prints the symbol 0, then we could solve the problem of 

determining whether a given Turing machine halts. 
2. But we can’t solve the problem of determining whether a given Turing 

machine halts, so neither can we solve the problem of determining 
whether it ever prints 0.

3. Given a Turing machine M, we can construct a logical formula F that is 
true iff M ever prints the symbol 0. 

4. If there were a solution to the Entscheidungsproblem, then we would 
be able to determine the truth of any logical sentence, including F, and 
thus be able to decide whether M ever prints the symbol 0.  

5. But we know that there is no procedure for determining whether M
ever prints 0.

6. So there is no solution to the Entscheidungsproblem.

Decidable and Semidecidable 
Languages
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Every CF Language is in D

Theorem: The set of context-free languages is a proper

subset of D.

Proof:

● Every context-free language is decidable, so the context-

free languages are a subset of D.  

● There is at least one language, AnBnCn, that is decidable 

but not context-free.  

So the context-free languages are a proper subset of D. 

Decidable and Semidecidable Languages

Almost every obvious language that is in SD is also in D:

● AnBnCn = {anbncn, n ≥ 0}

● {wcw, w ∈ {a, b}*}
● {ww, w ∈ {a, b}*}
● {x∗y=z: x,y,z ∈ {0, 1}* and, when x, y, and z are viewed 

as binary numbers, xy = z}

But there are languages that are in SD but not in D:

● H = {<M, w> : M halts on input w}

● {w: w is the email address of someone who will respond to 
a message you just posted to your newsgroup}
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D and SD

1. D is a subset of SD.  In other words, every decidable 
language is also semidecidable.

2. There exists at least one language that is in SD/D, 
the  donut in the picture.

3. What about languages that are not in SD?  Is the gray 
area of the figure empty?

Subset Relationships between D and SD

1. There exists at least one SD 

language that is not D. 

2. Every language that is in D is also in SD:  If L is in D, 

then there is a Turing machine M that decides it (by 

definition).

But M also semidecides it.
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Languages That Are Not in SD

Theorem: 3. There are languages that are not in SD.

Proof: Assume any nonempty alphabet Σ.  

Lemma: There is a countably infinite number of SD languages 
over Σ.

Proof: 

Lemma: There is an uncountably infinite number of languages 
over Σ.  

So there are more languages than there are languages in SD.  
Thus there must exist at least one language that is in ¬SD.

Closure of D Under Complement

Theorem: The set D is closed under complement.

Proof: (by construction) If L is in D, then there is a 
deterministic Turing machine M that decides it.

M:

y n

From M, we construct M′ to decide ¬L:
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Closure of D Under Complement

Theorem: The set D is closed under complement.

Proof: (by construction) 

M: M':

This works because, by definition, M is:
● deterministic
● complete

Since M' decides ¬L, ¬L is in D.

ny yn

Q8

SD is Not Closed Under Complement

Can we use the same technique?

M: M':

y
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Suppose we had:

ML: M¬L:
Accepts if input is in L.        Accepts if input not in L.

Then we could decide L.  How?

So every language in SD would also be in D.

But we know that there is at least one language (H) that is in 
SD but not in D.  Contradiction.

SD is Not Closed Under Complement

D and SD Languages

Theorem: A language is in D iff both it and its complement are in 
SD.

Proof:

● L in D implies L and ¬L are in SD:  
● L is in SD because D ⊂ SD.
● D is closed under complement
● So ¬L is also in D and thus in SD.

● L and ¬L are in SD implies L is in D: 
● M1 semidecides L.
● M2 semidecides ¬L.
● To decide L: 
● Run M1 and M2 in parallel on w.
● Exactly one of them will eventually accept.
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Theorem: The language ¬H = 

{<M, w> : TM M does not halt on input string w} 

is not in SD.  

Proof: 
● H is in SD.  
● If ¬H were also in SD then H would be in D.  
● But H is not in D.  
● So ¬H is not in SD. 

A Particular Language that is Not in SD

Q9

Enumerate means "list, in such a way that for any 

element, it appears in the list within a finite amount of 

time."

We say that Turing machine M enumerates the language 

L iff, for some fixed state p of M:

L = {w : (s, ε) |-M* (p, w)}.

"p" stands for "print"

A language is Turing-enumerable iff there is a Turing 

machine that enumerates it.

Another term that is often used is recursively 
enumerable.

Enumeration

Q10
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Let P be a Turing machine that enters state p and then 

halts:

A Printing Subroutine

Let L = a*.

Example of Enumeration

Q11
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Theorem: A language is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the 
Turing machine that enumerates L.  We convert M to a 
machine M' that semidecides L:

1. Save input w on another tape.
2. Begin enumerating L.  Each time an element of L is 

enumerated, compare it to w.  If they match, accept.

SD and Turing Enumerable

Proof that SD implies Turing-enumerable:

If L ⊆ Σ* is in SD, then there is a Turing machine M that semidecides L.

A procedure E to enumerate all elements of L:

1. Enumerate all w ∈ Σ* lexicographically.
e.g., ε, a, b, aa, ab, ba, bb, …

2. As each is enumerated, use M to check it. 

w3, w2, w1 ∈L? yes          w
E

M

M'

Problem?

The Other Way
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Dovetailing

Proof that SD implies Turing-enumerable:

If L ⊆ Σ* is in SD,  then there is a Turing machine M that 

semidecides L.

A procedure to enumerate all elements of L:

1. Enumerate all w ∈ Σ* lexicographically.

2. As each string wi is enumerated:

1. Start up a copy of M with wi as its input.

2. Execute one step of each Mi initiated so far, 

excluding only those that have previously halted.

3. Whenever an Mi accepts, output wi.

The Other Way
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M lexicographically enumerates L iff M enumerates the 

elements of L in lexicographic order.  

A language L is lexicographically Turing-enumerable iff 

there is a Turing machine that lexicographically 

enumerates it.

Example:  AnBnCn = {anbncn : n ≥ 0}

Lexicographic enumeration:

Lexicographic Enumeration

Theorem: A language is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing 
machine that decides L.  Then M' lexicographically 
generates the strings in Σ* and tests each using M.  It 
outputs those that are accepted by M.  Thus M'
lexicographically enumerates L.

Lexicographically Enumerable = D
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Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates 
L.  Then, on input w, M' starts up M and waits until:
●M generates w (so M' accepts), 
●M generates a string that comes after w (so M' rejects), or 
●M halts (so M' rejects).  

Thus M' decides L.

Proof, Continued

IN SD OUT
Semideciding TM H  Reduction   
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexic. enum Reduction
L and ¬L in SD 

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression                  a*b* Pumping

FSM Closure

Language Summary


