

Key ideas so far - 1

- Let Σ_{u} be

$$
\{(,), a, q, y, n, 0,1, \text { comma } \rightarrow, \leftarrow\}
$$ ordered as listed

- Any TM M may be encoded as a string $<M>$ over alphabet Σ_{u}
- A TM T may take as input $<\mathrm{M}_{1}>$, an encoding of one TM M_{1}, and produce as output $<\mathrm{M}_{2}>$, an encoding of TM M_{2}

Key ideas so far - 2

- We can lexicographically enumerate:
- All TM encodings
- All TM encodings with a given input alphabet
- All TM encodings with a given input alphabet and a given tape alphabet
- For any TM M and any string w over M's input alphabet, we can encode the pair M , w as a single string $<\mathrm{M}$, w>
- There is a universal TM U with input alphabet Σ_{U}.

Key ideas so far 3

- There is a universal TM U whose input alphabet is Σ_{U}.
- If U is started with input <M,w>, it simulates the behavior of M , started with input w :
- If M does not halt, U does not halt
- If M halts and accepts, so does U
- If M halts and rejects, so does U
- If M is a "function computing" TM, U leaves the same string on the tape as M, so that $\mathrm{U}(<\mathrm{M}, \mathrm{w}>)=\mathrm{M}(\mathrm{w})$

- Church-Turing Thesis:

"Computable" is equivalent to "computable by a
Turing machine"

Recap: D and SD

- A TM M with input alphabet Σ decides a language $L \subseteq \Sigma^{*}$ iff, for any string $w \in \Sigma^{\star}$,
- if $w \in L$ then M accepts w, and
- if $w \notin L$ then M rejects w.

A language L is decidable (an element of D) iff there is a Turing machine M that decides it.

- A TM M with input alphabet Σ semidecides L iff for any string $w \in \Sigma^{*}$,
- if $w \in L$ then M accepts w
- if $w \notin L$ then M does not accept w. M may reject or loop.

A language L is semidecidable (an element of $S D$) iff there is a Turing
machine that semidecides it.

Defining the Universe

What is the complement of:

- $A^{n} B^{n}=\left\{a^{n} b^{n}: n \geq 0\right\}$

Depends on the universe:
That universe may be $\{a, b\}^{*}$, or even $\{a, b, c, d\}^{*}$, or could be $\left\{a^{k} b^{m}\right\}$
$\cdot\{<M, w>:$ TM M halts on input string $w\}$
Universe may be $\Sigma_{U}{ }^{*}$, or could be
$\{<M, w>: M$ is a TM and w is a string over M's input alphabet $\}$

Defining the Universe

$L_{1}=\{<M, w>:$ TM M halts on input string $w\}$.
$L_{2}=\{<M>: M$ doesn't halt on any input string $\}$.
5. $L_{3}=\left\{<M_{\mathrm{a}}, M_{\mathrm{b}}\right\rangle: M_{\mathrm{a}}$ and M_{b} halt on the same strings $\}$.

For a string w to be in L_{1}, it must:

- be syntactically well-formed.
- encode a machine M and a string w such that M halts when started on w.

Define the universe from which we are drawing strings to contain only those strings that meet the syntactic requirements of the language definition.

This convention has no impact on the decidability of any of these languages since the set of syntactically valid strings is clearly in D.

A Different Definition of Complement

Our earlier definition:
$\neg L_{1}=\{x: x$ is not a syntactically well formed $<M, w>$ pair $\}$ $\{<M, w>: T M M$ does not halt on input string $w\}$.

We will use a different definition:
Define the complement of any language L whose member strings include at least one Turing machine description to be with respect to a universe of strings that are of the same syntactic form as L.

Now we have:
$\neg L_{1}=\{<M, w>:$ TM M does not halt on input string $w\}$.

The Language H

Theorem: The language:
$H=\{<M, w>:$ TM M halts on input string $w\}$

- is semidecidable, but
- is not decidable.

Proof soon!

Does This Program Always Halt?

times3(x : positive integer) $=$ while $x \neq 1$ do:
if x is even then $x=x / 2$.
else $x=3 x+1$
times3(25) ...
Lothar Collatz, 1937, conjectured that times3 halts for all positive integers n. Still an open problem.

Paul Erdős: "Mathematics is not yet ready for such confusing, troubling, and hard problems."
http://mathworld.wolfram.com/Collatz Problem.html

```
max = 100000
maxCount = 0
for i in range(1, max+1):
    current = i
    count = 0
    while current != 1:
        count += 1
        if current % 2 == 0:
            current /= 2
        else:
            current = 3* current + 1
    print "%7d %7d" % (i, count)
    if count > maxCount:
        maxCount = count
print "maxCount = ", maxCount
```


H is Semidecidable

Lemma: The language:
$H=\{<M, w\rangle: T M M$ halts on input string $w\}$
is semidecidable.
Proof: The TM M_{H} semidecides H :
$M_{H}(<M, w>)=$

1. Run Mon w.
M_{H} halts iff M halts on w. Thus M_{H} semidecides H .

The Undecidability of the Halting Problem

Lemma: The language:
$\mathrm{H}=\{<M, w>:$ TM M halts on input string $w\}$
is not decidable.

Proof: If H were decidable, then some TM M_{H} would decide it. M_{H} would implement the specification:
halts(<M,w>) =
if $\langle M\rangle$ is a Turing machine description and M halts on input w then accept. else reject.

(an
 Trouble [iin (Wabash) River City)]

Trouble(x : string) $=$
if halts($\langle x, x\rangle$) then loop forever, else halt.

If there is an M_{H} that computes the function halts, Trouble exists:

Note that it is important to this proof that Trouble be constructible from M_{H}

Consider halts(<Trouble, Trouble>):

- If halts reports that Trouble(<Trouble>) halts, Trouble loops.
- But if halts reports that Trouble(<Trouble>) does not halt, then Trouble halts.

Viewing the Halting Problem as Diagonalization

- Lexicographically enumerate Turing machine encodings and input strings.
- Let 1 mean halting, blank mean non halting.

	i_{1}	i_{2}	i_{3}	\ldots	<Trouble>	\ldots
machine $_{1}>$	1					
machine $_{2}>$		1				
machine $_{3}>$					1	
\ldots				1		
<Trouble>			1			1
\ldots	1	1	1			
\ldots				1		

If M_{H} exists and decides membership in H, it must be able to correctly fill in any cell in this table.

What about the shaded square?

If H were in D, then SD would equal D

Recall: $\mathrm{H}=\{<M, w>:$ TM M halts on input string $w\}$ We know that $\mathrm{H} \in \mathrm{SD}$. If H were also in D , then there would exist a TM O that decides it.

Theorem: If H were in D then every SD language would be in D .
Proof: Let L be any SD language. There exists a TM M_{L} that semidecides it. The following machine M^{\prime} decides whether w is in $L\left(M_{\llcorner }\right)$:
$M^{\prime}(w$: string $)=$

1. Run O on $<M_{L}, w>$. (O will always halt)
2. If O accepts (i.e., M_{L} will halt on input w), then:
2.1. Run M_{L} on w.
2.2. If it accepts, accept. Else reject.
3. Else reject.

Recap: The Entscheidungsproblem

From Wikipedia: The Entscheidungsproblem ("decision problem", David Hilbert 1928) asks for an algorithm that will take as input a description of a formal language and a mathematical statement in the language, and produce as output either "True" or "False" according to whether the statement is true or false.

The algorithm need not justify its answer, nor provide a proof, so long as it is always correct.

Back to the Entscheidungsproblem
 Theorem: The Entscheidungsproblem is unsolvable.
 5 Proof: (Due to Turing)
 1. If we could solve the problem of determining whether a given Turing machine ever prints the symbol 0 , then we could solve the problem of determining whether a given Turing machine halts.
 2. But we can't solve the problem of determining whether a given Turing machine halts, so neither can we solve the problem of determining whether it ever prints 0 .
 3. Given a Turing machine M, we can construct a logical formula F that is true iff M ever prints the symbol 0 .
 4. If there were a solution to the Entscheidungsproblem, then we would be able to determine the truth of any logical sentence, including F, and thus be able to decide whether M ever prints the symbol 0 .
 5. But we know that there is no procedure for determining whether M ever prints 0 .
 6. So there is no solution to the Entscheidungsproblem.
 Decidable and Semidecidable Languages

Every CF Language is in D

Theorem: The set of context-free languages is a proper subset of D.

Proof:

- Every context-free language is decidable, so the contextfree languages are a subset of D.
- There is at least one language, $\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}} \mathrm{C}^{\mathrm{n}}$, that is decidable but not context-free.

So the context-free languages are a proper subset of D .

Decidable and Semidecidable Languages

Almost every obvious language that is in SD is also in D:

- $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} C^{n}, n \geq 0\right\}$
- $\left\{w \subset w, w \in\{a, b\}^{*}\right\}$
- $\left\{w w, w \in\{a, b\}^{*}\right\}$
- $\left\{x * y=z: x, y, z \in\{0,1\}^{*}\right.$ and, when x, y, and z are viewed as binary numbers, $x y=z$ \}

But there are languages that are in SD but not in D :

- $\mathrm{H}=\{<M, w>: M$ halts on input $w\}$
- $\{w: w$ is the email address of someone who will respond to a message you just posted to your newsgroup\}

D and SD

1. D is a subset of $S D$. In other words, every decidable language is also semidecidable.
2. There exists at least one language that is in SD/D, the donut in the picture.
3. What about languages that are not in SD? Is the gray area of the figure empty?

Subset Relationships between D and SD

1. There exists at least one SD language that is not D.
2. Every language that is in D is also in $S D$: If L is in D, then there is a Turing machine M that decides it (by definition).

But M also semidecides it.

Languages That Are Not in SD

Theorem: 3. There are languages that are not in SD.
Proof: Assume any nonempty alphabet Σ.
Lemma: There is a countably infinite number of SD languages over Σ.

Proof:

Lemma: There is an uncountably infinite number of languages over Σ.

So there are more languages than there are languages in SD.
Thus there must exist at least one language that is in \neg SD.

Closure of D Under Complement

Theorem: The set D is closed under complement.
Proof: (by construction) If L is in D, then there is a deterministic Turing machine M that decides it.

M:

From M, we construct M^{\prime} to decide $\neg L$:

Theorem: The set D is closed under complement.
Proof: (by construction)

$M^{\prime}:$

This works because, by definition, M is:

- deterministic
- complete

Since M^{\prime} decides $\neg L, \neg L$ is in D.

?
 SD is Not Closed Under Complement

Suppose we had:
M_{L} :
Accepts if input is in $L . \quad$ Accepts if input not in L.

Then we could decide L. How?
So every language in SD would also be in D.
But we know that there is at least one language (H) that is in SD but not in D. Contradiction.

[^0]
A Particular Language that is Not in SD

Theorem: The language $\neg H=$
$\{<M, w>:$ TM M does not halt on input string $w\}$ is not in SD.

Proof:

- H is in SD.
- If $\neg H$ were also in SD then H would be in D.
- But H is not in D .
- So $\neg H$ is not in SD.

Enumeration

Enumerate means "list, in such a way that for any element, it appears in the list within a finite amount of time."

We say that Turing machine M enumerates the language L iff, for some fixed state p of M :

$$
L=\left\{w:(s, \varepsilon) \mid-M^{*}(p, w)\right\} .
$$

" p " stands for "print"
A language is Turing-enumerable iff there is a Turing machine that enumerates it.

Another term that is often used is recursively enumerable.

Example of Enumeration

Let $L=a^{*}$.
M_{1} :
$\stackrel{\rightharpoonup}{>}$
M_{2} :
$>P \mathrm{PaP} \square \mathrm{RaRaRaP} \square P$

SD and Turing Enumerable

Theorem: A language is SD iff it is Turing-enumerable.
Proof that Turing-enumerable implies SD: Let M be the Turing machine that enumerates L. We convert M to a machine M^{\prime} that semidecides L :

1. Save input w on another tape.
2. Begin enumerating L. Each time an element of L is enumerated, compare it to w. If they match, accept.

The Other Way

Proof that SD implies Turing-enumerable:

If $L \subseteq \Sigma^{*}$ is in SD, then there is a Turing machine M that semidecides L.
A procedure E to enumerate all elements of L :

1. Enumerate all $w \in \Sigma^{*}$ lexicographically.
e.g., ε, a, b, aa, ab, ba, bb, ...
2. As each is enumerated, use M to check it.

Problem?

The Other Way

Proof that SD implies Turing-enumerable:

If $L \subseteq \Sigma^{*}$ is in SD, then there is a Turing machine M that semidecides L.

A procedure to enumerate all elements of L :

1. Enumerate all $w \in \Sigma^{*}$ lexicographically.
2. As each string w_{i} is enumerated:
3. Start up a copy of M with w_{i} as its input.
4. Execute one step of each M_{i} initiated so far, excluding only those that have previously halted.
5. Whenever an M_{i} accepts, output w_{i}.

Lexicographic Enumeration

M lexicographically enumerates L iff M enumerates the elements of L in lexicographic order.

A language L is lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it.

Example: $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} C^{n}: n \geq 0\right\}$
Lexicographic enumeration:

Lexicographically Enumerable = D

Theorem: A language is in D iff it is lexicographically Turingenumerable.

Proof that D implies lexicographically TE: Let M be a Turing machine that decides L. Then M 'lexicographically generates the strings in Σ^{*} and tests each using M. It outputs those that are accepted by M. Thus M^{\prime} lexicographically enumerates L.

Proof, Continued

Proof that lexicographically Turing Enumerable implies D: Let M be a Turing machine that lexicographically enumerates
L. Then, on input w, M ' starts up M and waits until:

- M generates w (so M^{\prime} accepts),
- M generates a string that comes after w (so M^{\prime} rejects), or
- M halts (so M^{\prime} rejects).

Thus M ' decides L.

[^0]:

 ## D and SD Languages

 Theorem: A language is in D iff both it and its complement are in SD.

 ## Proof:

 - L in D implies L and $\neg L$ are in SD:
 - L is in SD because $D \subset S D$.
 - D is closed under complement
 - So $\neg L$ is also in D and thus in SD.
 - L and $\neg L$ are in SD implies L is in D:
 - M_{1} semidecides L.
 - M_{2} semidecides $\neg L$.
 - To decide L:
 - Run M_{1} and M_{2} in parallel on w.
 - Exactly one of them will eventually accept.

