$$
\begin{aligned}
& \text { Turing Machine Notation, } \\
& \text { Programming, } \\
& \text { Extensions }
\end{aligned}
$$

[^0]
Checking Inputs and Combining Machines

Next we need to describe how to:

- Check the tape and branch based on what character we see, and
- Combine the basic machines to form larger ones.

To do this, we need two forms:

- $M_{1} M_{2}$
- $M_{1} \xrightarrow{\text { <condition }>} M_{2}$

Turing Machines Macros Cont'd

Example:

- Start in the start state of M_{1}.
- Compute until M_{1} reaches a halt state.
- Examine the tape and take the appropriate transition.
- Start in the start state of the next machine, etc.
- Halt if any component reaches a halt state and has no place to go.
- If any component fails to halt, then the entire machine may fail to halt.

Two Useful Kinds of TMs

1. Recognize a language
2. Compute a function

Turing Machines as Language Recognizers

Let $M=(K, \Sigma, \Gamma, \delta, s,\{y, n\})$.

- M accepts a string w iff $(s, \underline{\square} w) \mid-M^{*}(y, w)$ for some string W.
- M rejects a string w iff $(s, \underline{\square} w) \mid-M^{*}(n, w)$ for some string W.
M decides a language $L \subseteq \Sigma^{*}$ iff:
For any string $w \in \Sigma^{*}$ it is true that:
if $w \in L$ then M accepts w, and
if $w \notin L$ then M rejects w.
A language L is decidable iff there is a Turing machine M that decides it. In this case, we will say that L is in \boldsymbol{D}.

Semideciding a Language

Let Σ_{M} be the input alphabet to a TM M. Let $L \subseteq \Sigma_{M}{ }^{*}$.
M semidecides L iff, for any string $w \in \Sigma_{M}{ }^{*}$:

- $w \in L \rightarrow M$ accepts w
- $w \notin L \rightarrow M$ does not accept w. $\quad M$ may either: reject or fail to halt.

A language L is semidecidable iff there is a Turing machine that semidecides it. We define the set $S D$ to be the set of all semidecidable languages.

Example of Semideciding

Let $L=b^{*} a(a \cup b)^{*}$
We can build M to semidecide L :

1. Loop
1.1 Move one square to the right. If the character under the read head is an a, halt and accept.

In our macro language, M is:

Example of Semideciding

$L=b^{*} a(a \cup b)^{*}$. We can also decide L :
Loop:
1.1 Move one square to the right.
1.2 If the character under the read/write head is an a, halt and accept.
1.3 If it is \square, halt and reject.

In our macro language, M is:

Computing Functions

Let $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$.

Let $\Sigma^{\prime} \subseteq \Sigma$ be M s output alphabet.
Let f be any function from Σ^{*} to $\Sigma^{\prime *}$.
M computes f iff, for all $w \in \Sigma^{*}$:

- If w is an input on which f is defined: $\quad M(w)=f(w)$.
- Otherwise $M(w)$ does not halt.

A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.

Example of Computing a Function

Let $\Sigma=\{a, b\}$. Let $f(w)=w w$.

Define the copy machine C :$\square w \geq w \square$

Also use the S_{\leftarrow} machine:
$\square u$ [日]
\rightarrow
Duwn

Then the machine to compute f is just $\quad>C S_{\leftarrow} L_{\square}$

Example of Computing a Function

Let $\Sigma=\{a, b\}$. Let $f(w)=w w$.

Define the copy machine C :

We skip the details in class; you can look at them later.
Then use the the S_{\leftarrow} machine:

$$
\square u \underline{\square} w \square \quad \rightarrow \quad \square u w \underline{\square}
$$

Then the machine to compute f is just $\quad>C S_{\leftarrow} L_{\square}$

Computing Numeric Functions

For any positive integer k, value $e_{k}(n)$ returns the nonnegative integer that is encoded, base k, by the string n.

For example:

- value $_{2}(101)=5$.
- value $(101)=65$.

TM M computes a function from \mathbb{N}^{m} to \mathbb{N} iff, for some k : value $_{k}\left(M\left(n_{1} ; n_{2} ; \ldots n_{m}\right)\right)=f\left(\right.$ value $_{k}\left(n_{1}\right), \ldots$ value $\left._{k}\left(n_{m}\right)\right)$.

Computing Numeric Functions

Example: $\operatorname{succ}(n)=n+1$

We will represent n in binary. So $n \in 0 \cup 1\{0,1\}^{*}$

Input: \qquad Output: 프 $n+1$ ㅁ
Output: 므10000】

Turing Machine Extensions

There are many extensions we might like to make to our basic Turing machine model. But:

We can show that every extended machine has an equivalent basic machine.

We can also place a bound on any change in the complexity of a solution when we go from an extended machine to a basic machine.

Some possible extensions:

- Multiple tape TMs
- Nondeterministic TMs

Multiple Tapes

The transition function for a k-tape Turing machine:

$$
\begin{array}{rlc}
((K-H) & , \Gamma_{1} \text { to } & \left(K, \Gamma_{1^{\prime}},\{\leftarrow, \rightarrow, \uparrow\}\right. \\
, \Gamma_{2} & , \Gamma_{2^{\prime}},\{\leftarrow, \rightarrow, \uparrow\} \\
, & \cdot & \cdot \\
, & \cdot & \cdot \\
, & \left.\Gamma_{k}\right) & \left., \Gamma_{K},\{\leftarrow, \rightarrow, \uparrow\}\right)
\end{array}
$$

Input: as before on tape 1, others blank. Output: as before on tape 1, others ignored.

Note: each tape head is allowed to stay where it is.

Adding Tapes Adds No Power

Theorem: Let M be a k-tape Turing machine for some $k \geq 1$.
Then there is a standard TM M^{\prime} where $\Sigma \subseteq \Sigma^{\prime}$, and:

- On input x, M halts with output z on the first tape iff M^{\prime} halts in the same state with z on its tape.
- On input x, if M halts in n steps, M^{\prime} halts in $\mathcal{O}\left(n^{2}\right)$ steps.

Proof: By construction.

(a)

\cdots	\square	-	a	b	a	a	\square	\square	\square	\ldots
		1	0	0	0	0	0	0		
		\square	\square	\square	\square	\square	\square			
		1	0	0	0	0	0	0		

Alphabet $\left(\Sigma^{\prime}\right)$ of $M^{\prime}=\Gamma \cup(\Gamma \times\{0,1\})^{k}$:
$\square, a, b,(\square, 1, \square, 1),(a, 0, \square, 0),(b, 0, \square, 0), \ldots$

[^1][^2]* assuming that $n \geq w$

The Universal Turing Machine

Problem: All our machines so far are hardwired.
Question: Can we build a programmable TM that accepts as input:
program input string
executes the program, and outputs:
output string

```
The Universal Turing Machine
Yes, it's called the Universal Turing Machine.
To define the Universal Turing Machine \(U\) we need to:
1. Define an encoding operation for TMs.
2. Describe the operation of \(U\) given input \(<M\), \(w>\), the encoding of:
- a TM \(M\), and
- an input string w.
```


Encoding a Turing Machine \boldsymbol{M}

We need to describe $M=(K, \Sigma, \Gamma, \delta, s, H)$ as a string:

- The states
- The tape alphabet
- The transitions

Encoding the States

- Let i be $\left\lceil\log _{2}(|K|)\right\rceil$.
- Number the states from 0 to $|K|-1$ in binary:
- Number s, the start state, 0.
- Number the others in any order.
- If t is the binary number assigned to state t, then:
- If t is the halting state y, assign it the string $\mathrm{y} t$ '.
- If t is the halting state n, assign it the string $n t$.
- If t is any other state, assign it the string q t^{\prime}.

Example of Encoding the States

Suppose M has 9 states.
$i=4$
$s=q 0000$,
Remaining states (where y is 3 and n is 4):

```
q0001, q0010, y0011, n0100,
q0101, q0110, q0111, q1000
```


Encoding a Turing Machine M, Continued

The tape alphabet:
ay $: y \in\{0,1\}^{+}$, $|y|=j$, and j is the smallest integer such that $2^{j} \geq|\Gamma|$.

Example: $\Sigma=\{\square, a, b, c\} . \quad j=2$.

$$
\begin{array}{ll}
\square= & a 00 \\
a= & a 01 \\
b= & a 10 \\
c= & a 11
\end{array}
$$

Encoding a Turing Machine M, Continued

The transitions: (state, input, state, output, move)
Example: $\quad(\mathrm{q} 000, \mathrm{a} 000, \mathrm{q} 110, \mathrm{a} 000, \rightarrow)$
Specify s as q000.
Specify H.

A Special Case

We will treat this as a special case:

An Encoding Example

Consider $M=(\{s, q, h\},\{a, b, c\},\{\square, a, b, c\}, \delta, s,\{h\})$:

state	symbol	δ
s	\square	$(q, \square, \square \quad \rightarrow)$
s	a	$(s, \mathrm{~b}, \rightarrow)$
s	b	$(q, \mathrm{a}, \leftarrow)$
s	c	$(q, \mathrm{~b}, \leftarrow)$
q	\square	$(s, \mathrm{a}, \square \rightarrow)$
q	a	$(q, \mathrm{~b}, \rightarrow)$
q	b	$(q, \mathrm{~b}, \leftarrow)$
q	c	$(h, \mathrm{a}, \leftarrow)$

state/symbol	representation
s	q 00
q	q 01
h	h 10
\square	a 00
a	a 01
b	a 10
c	a 11

$$
\begin{aligned}
<M>= & (\mathrm{q} 00, \mathrm{a} 00, \mathrm{q} 01, \mathrm{a} 00, \rightarrow),(\mathrm{q} 00, \mathrm{a} 01, \mathrm{q} 00, \mathrm{a} 10, \rightarrow), \\
& (\mathrm{q} 00, \mathrm{a} 10, \mathrm{q} 01, \mathrm{a} 01, \leftarrow),(\mathrm{q} 00, \mathrm{a} 11, \mathrm{q} 01, \mathrm{a} 10, \leftarrow), \\
& (\mathrm{q} 01, \mathrm{a} 00, \mathrm{q} 00, \mathrm{a} 01, \rightarrow),(\mathrm{q} 01, \mathrm{a} 01, \mathrm{q} 01, \mathrm{a} 10, \rightarrow), \\
& (\mathrm{q} 01, \mathrm{a} 10, \mathrm{q} 01, \mathrm{a} 11, \leftarrow),(\mathrm{q} 01, \mathrm{a} 11, \mathrm{~h} 10, \mathrm{a} 01, \leftarrow)
\end{aligned}
$$

Enumerating Turing Machines

Theorem: There exists an infinite lexicographic enumeration of:
(a) All syntactically valid TMs.
(b) All syntactically valid TMs with specific input alphabet Σ.
(c) All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ.

Enumerating Turing Machines

Proof: Fix $\Sigma=\{($,$) , a, q, y, n, 0,1$, comma, $\rightarrow, \leftarrow\}$, ordered as listed. Then:

1. Lexicographically enumerate the strings in Σ^{*}.
2. As each string s is generated, check to see whether it is a syntactically valid Turing machine description. If it is, output it.

To restrict the enumeration to symbols in sets Σ and Γ, check, in step 2, that only alphabets of the appropriate sizes are allowed.

We can now talk about the $i^{\text {th }}$ Turing machine.

Example of a Transforming TM T:

Input: a TM M_{1} that reads its input tape and performs some operation P on it.

Output: a TM M_{2} that performs P on an empty input tape.

Encoding Multiple Inputs

Let:
$<x_{1}, x_{2}, \ldots x_{n}>$
mean a single string that encodes the sequence of individual values:

$$
x_{1}, x_{2}, \ldots x_{n}
$$

The Specification of the Universal TM

On input $<M, w>, U$ must:

- Halt iff M halts on w.
- If M is a deciding or semideciding machine, then:
- If M accepts, accept.
- If M rejects, reject.
- If M computes a function, then $U(<M, w\rangle)$ must equal $M(w)$.

How U Works

U will use 3 tapes:

- Tape 1: Ms tape.
- Tape 2: <M>, the "program" that U is running.
- Tape 3: Ms state.

Initialization of U :

1. Copy $\langle M>$ onto tape 2.
2. Look at <M>, figure out what i is, and write the encoding of state s on tape 3.

After initialization:

\square	\square	\square	\square	\square			$w>$	\square	\square
	0	0	0	0	1	0	0		
	$<M$ -			---M>	\square	\square	-		
	1	0	0	0	0	0	0		
	q	0	0	0	\square	-	\square		
	1	\square	\square	\square	\square	\square	\square		

\square	\square	\square	-	\square	$<$		---w>	\square	\square
	0	0	0	0	1	0	0		
	$<M$--			$\cdots-\cdots$	\square	\square	\square		
	1	0	0	0	0	0	0		
	q	0	0	0	\square	\square	\square		
	1	\square	\square	\square	\square	\square	\square		

Simulate the steps of M :

1. Until M would halt do:
1.1 Scan tape 2 for a quintuple that matches the current state, input pair.
1.2 Perform the associated action, by changing tapes 1 and 3 . If necessary, extend the tape.
1.3 If no matching quintuple found, halt. Else loop.
2. Report the same result M would report.

How long does U take?

If A Universal Machine is Such a Good Idea ...
 Could we define a Universal Finite State Machine?
 Such a FSM would accept the language:
 $L=\{<F, w\rangle: F$ is a FSM, and $w \in L(F)\}$

[^0]:

 ## A Macro language for Turing Machines

 (1) Define some basic machines

 - Symbol writing machines

 For each $x \in \Gamma$, define M_{x}, written just x, to be a machine that writes x.

 - Head moving machines

 R: for each $x \in \Gamma, \delta(s, x)=(h, x, \rightarrow)$
 L: for each $x \in \Gamma, \delta(s, x)=(h, x, \leftarrow)$

 - Machines that simply halt:
 h, which simply halts (don't care whether it accepts).
 n, which halts and rejects.
 y, which halts and accepts.

[^1]: 剘时
 The Operation of \mathbf{M}^{\prime}

 | \ldots | \square | - | a | b | a | a | \square | \square | \square | \ldots |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | |
 | | | \square | \square | \square | \square | \square | \square | | | |
 | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | |

 1. Set up the multitrack tape.
 2. Simulate the computation of M until (if) M would halt:
 2.1 Scan left and store in the state the k-tuple of characters under the read heads.
 Move back right.
 2.2 Scan left and update each track as required by the transitions of M. If necessary, subdivide a new (formerly blank) square into tracks.
 Move back right.
 3. When M would halt, reformat the tape to throw away all but track 1 , position the head correctly, then go to Ms halt state.
[^2]: How Many Steps Does M^{\prime} Take?
 Let: $\quad w$ be the input string, and n be the number of steps it takes M to execute.

 Step 1 (initialization):
 $\mathcal{O}(|w|)$.
 Step 2 (computation):
 Number of passes = n.
 Work at each pass: $2.1=2 \cdot$ (length of tape).

 $$
 =2 \cdot(|w|+n) \text {. }
 $$

 $2.2=2 \cdot(|w|+n)$.
 Total:

 $$
 \mathcal{O}(n \cdot(|w|+n)) .
 $$

 Step 3 (clean up): $\quad \mathcal{O}$ (length of tape).
 Total: $\mathcal{O}(n \cdot(|w|+n))$.

 $$
 =\mathcal{O}\left(n^{2}\right) . \text { * }
 $$

