
1/27/2012

1

MA/CSSE 474
Theory of Computation

Turing Machine Notation, 

Programming,

Extensions

A Macro language for Turing Machines

(1) Define some basic machines

● Symbol writing machines

For each x ∈ Γ, define Mx, written just x, to be a machine 
that writes x.

● Head moving machines

R: for each x ∈ Γ, δ(s, x) = (h, x, →)
L: for each x ∈ Γ, δ(s, x) = (h, x, ←)

●Machines that simply halt: 
h, which simply halts (don't care whether it accepts).  
n, which halts and rejects.
y, which halts and accepts.



1/27/2012

2

Next we need to describe how to:

●Check the tape and branch based on what character 

we see, and 

●Combine the basic machines to form larger ones.

To do this, we need two forms:

●M1 M2

●M1 <condition>     M2

Checking Inputs and Combining Machines

Turing Machines Macros Cont'd

Example:

>M1 a M2

b

M3

● Start in the start state of M1.
● Compute until M1 reaches a halt state.
● Examine the tape and take the appropriate transition.
● Start in the start state of the next machine, etc.
● Halt if any component reaches a halt state and has no place 

to go.
● If any component fails to halt, then the entire machine may fail 

to halt.



1/27/2012

3

a

M1 M2 becomes M1 a, b M2

b

M1 all elems of Γ M2 becomes M1 M2

or
M1M2

Variables

M1 all elems of Γ M2 becomes M1 x ← ¬a M2

except a and x takes on the value of 

the current square

M1 a, b M2 becomes M1 x ← a, b M2

and x takes on the value of 

the current square

M1 x = y M2

if x = y then take the transition

e.g.,    > x ← ¬� Rx if the current square is not blank, go right and copy it.

More macros

Blank/Non-blank Search Machines

Find the first blank square to 
the right of the current square.

Find the first blank square to 
the left of the current square.

Find the first nonblank square to 
the right of the current square.

Find the first nonblank square to 
the left of the current square 

R�

L¬�

R¬�

L�



1/27/2012

4

More Search Machines

La Find the first occurrence of a to 

the left of the current square.

Ra,b Find the first occurrence of a or b

to the right of the current square.

La,b a M1 Find the first occurrence of a or b

to the left of the current square, 
b then go to M1 if the detected

character is a; go to M2 if the 
M2 detected character is b.

Lx←a,b Find the first occurrence of a or b

to the left of the current square 
and set x to the value found.

Lx←a,bRx Find the first occurrence of a or b

to the left of the current square, 
set x to the value found, move one 
square to the right, and write x (a or b).

An Example

Input:  �w w ∈ {1}*
Output: �w3

Example: �111��������������



1/27/2012

5

What does this machine do?

Two Useful Kinds of TMs

1. Recognize a language

2. Compute a function



1/27/2012

6

Turing Machines as Language Recognizers

Let M = (K, Σ, Γ, δ, s, {y, n}). 

● M accepts a string w iff (s, �w) |-M*  (y, w′) for some 

string w′.

● M rejects a string w iff (s, �w) |-M*  (n, w′) for some 

string w′.

M decides a language L ⊆ Σ* iff:

For any string w ∈ Σ* it is true that:

if w ∈ L then M accepts w, and

if w ∉ L then M rejects w.

A language L is decidable iff there is a Turing machine M

that decides it.  In this case, we will say that L is in D.

A Deciding Example

AnBnCn = {anbncn : n ≥ 0}

Example: �aabbcc���������

Example:  �aaccb���������



1/27/2012

7

Semideciding a Language

Let ΣM be the input alphabet to a TM M.  Let L ⊆ ΣM*.  

M semidecides L iff, for any string w ∈ ΣM*:

● w ∈ L → M accepts w

● w ∉ L → M does not accept w.  M may either: 

reject or 

fail to halt.

A language L is semidecidable iff there is a Turing 

machine that semidecides it.  We define the set SD to 

be the set of all semidecidable languages.  

Example of Semideciding

Let L = b*a(a ∪ b)*

We can build M to semidecide L:

1. Loop
1.1 Move one square to the right.  If the character under  

the read head is an a, halt and accept.

In our macro language, M is:



1/27/2012

8

Example of Semideciding

L = b*a(a ∪ b)*.   We can also decide L:

Loop:
1.1 Move one square to the right.  
1.2 If the character under the read/write head is 

an a, halt and accept.  
1.3 If it is �, halt and reject.

In our macro language, M is:

Computing Functions

Let M = (K, Σ, Γ, δ, s, {h}).  

Define M(w) = z iff (s, �w) |-M*  (h, �z).  

Let Σ′ ⊆ Σ be M’s output alphabet.  
Let f be any function from Σ* to Σ′*.  

M computes f iff, for all w ∈ Σ*:

● If w is an input on which f is defined: M(w) = f(w).

● Otherwise M(w) does not halt.

A function f is recursive or computable iff there is a Turing 
machine M that computes it and that always halts.



1/27/2012

9

Example of Computing a Function

Let Σ = {a, b}.  Let f(w) = ww.

Input: �w������ Output: �ww�

Define the copy machine C:  
�w������ � �w�w�

Also use the S← machine:
�u�w� � �uw�

Then the machine to compute f is just      >C S← L�

Example of Computing a Function

Let Σ = {a, b}.  Let f(w) = ww.

Input: �w������ Output: �ww�

Define the copy machine C:  
�w������ � �w�w�

Then use the  the S← machine:
�u�w� � �uw�

Then the machine to compute f is just      >C S← L�

We skip the 
details in class; 
you can look at 
them later.



1/27/2012

10

Computing Numeric Functions

For any positive integer k, valuek(n) returns the nonnegative 
integer that is encoded, base k, by the string n.  

For example:

● value2(101) = 5.

● value8(101) = 65.  

TM M computes a function f from ℕm to ℕ iff, for some k:

valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)).

Computing Numeric Functions

Example:  succ(n) = n + 1

We will represent n in binary.  So n ∈ 0 ∪ 1{0, 1}*

Input: �n������ Output: �n+1�
�1111���� Output: �10000�



1/27/2012

11

Why Are We Working with Our Hands 
Tied Behind Our Backs?

Turing machines Are more powerful than any of
the other formalisms we have
studied so far.

☺
Turing machines Are a lot harder to work with than

all the real computers we have
available.

�
Why bother?

The very simplicity that makes it hard to program Turing machines 
makes it possible to reason formally about what they can do.  If we 
can, once, show that anything a real computer can do can be done 
(albeit clumsily) on a Turing machine, then we have a way to 
reason about what real computers can do.

Turing Machine Extensions

There are many extensions we might like to make to our 

basic Turing machine model.  But:

We can show that every extended machine 
has an equivalent basic machine.

We can also place a bound on any change in the 

complexity of a solution when we go from an extended 

machine to a basic machine.

Some possible extensions:

● Multiple tape TMs

● Nondeterministic TMs



1/27/2012

12

Multiple Tapes

Multiple Tapes

The transition function for a k-tape Turing machine:

((K-H) ,  Γ1 to (K , Γ1′, {←, →, ↑}

,  Γ2 , Γ2′, {←, →, ↑}

,   . ,   .

,   . ,   .

,   Γk) , Γk′, {←, →, ↑})

Input: as before on tape 1, others blank.

Output: as before on tape 1, others ignored.

Note: each tape head is allowed to stay where it is.



1/27/2012

13

Example: Copying a String

Example: Copying a String



1/27/2012

14

Example: Copying a String

Another Two Tape Example: Addition



1/27/2012

15

Adding Tapes Adds No Power

Theorem: Let M be a k-tape Turing machine for some k ≥ 1.  
Then there is a standard TM M' where Σ ⊆ Σ', and:

●On input x, M halts with output z on the first tape iff
M' halts in the same state with z on its tape. 

●On input x, if M halts in n steps, M' halts in O(n2) steps.

Proof: By construction.

The Representation

Alphabet (Σ') of M' = Γ ∪ (Γ × {0, 1})k:

�, a, b, (�, 1, �, 1), (a, 0, � ,0), (b, 0, �, 0), …



1/27/2012

16

The Operation of M'

1. Set up the multitrack tape.
2. Simulate the computation of M until (if) M would halt: 

2.1 Scan left and store in the state the k-tuple of characters  
under the read heads.  
Move back right.

2.2 Scan left and update each track as required by the  
transitions of M.  If necessary, subdivide a new (formerly 
blank) square into tracks.  
Move back right.

3. When M would halt, reformat the tape to throw away all but track 1, 
position the head correctly, then go to M’s halt state.

How Many Steps Does M' Take?

Let: w be the input string, and 
n be the number of steps it takes M to execute.

Step 1 (initialization):  O(|w|).

Step 2 ( computation):
Number of passes = n.
Work at each pass: 2.1 = 2 ⋅ (length of tape).

= 2 ⋅ (|w| + n).
2.2 = 2 ⋅ (|w| + n).

Total: O(n ⋅ (|w| + n)).

Step 3 (clean up): O(length of tape).

Total: O(n ⋅ (|w| + n)).
= O(n2). *

* assuming that n ≥ w



1/27/2012

17

Universal Turing Machine

The Universal Turing Machine

Problem:  All our machines so far are hardwired.

ENIAC - 1945



1/27/2012

18

The Universal Turing Machine

Problem:  All our machines so far are hardwired.

Question: Can we build a programmable TM that accepts

as input:

program   input string 

executes the program, and outputs:

output string

The Universal Turing Machine

Yes, it’s called the Universal Turing Machine.  

To define the Universal Turing Machine U we need to:

1. Define an encoding operation for TMs.

2. Describe the operation of U given input <M, w>, the 

encoding of:

● a TM M, and

● an input string w.



1/27/2012

19

Encoding a Turing Machine M

We need to describe M = (K, Σ, Γ, δ, s, H) as a string: 

• The states

• The tape alphabet

• The transitions

Encoding the States

• Let i be log2(|K|). 

• Number the states from 0 to |K|-1 in binary:  

⋅ Number s, the start state, 0.  

⋅ Number the others in any order. 

• If t′ is the binary number assigned to state t, then:
⋅ If t is the halting state y, assign it the string yt′.
⋅ If t is the halting state n, assign it the string nt′.
⋅ If t is any other state, assign it the string qt′.



1/27/2012

20

Example of Encoding the States

Suppose M has 9 states.

i = 4

s = q0000, 

Remaining states (where y is 3 and n is 4):

q0001, q0010, y0011, n0100, 

q0101, q0110, q0111, q1000

Encoding a Turing Machine M, Continued

The tape alphabet:

ay : y ∈ {0, 1}+, 

|y| = j, and 

j is the smallest integer such that 2j ≥ |Γ|. 

Example:  Σ = {�, a, b, c}.    j = 2.

� = a00

a = a01

b = a10

c = a11



1/27/2012

21

The transitions:    (state, input, state, output, move)

Example:  (q000,a000,q110,a000,→)

Specify s as q000.

Specify H.

Encoding a Turing Machine M, Continued

We will treat this as a special case:

A Special Case



1/27/2012

22

An Encoding Example
Consider M = ({s, q, h}, {a, b, c}, {�, a, b, c}, δ, s, {h}):

<M> = (q00,a00,q01,a00,→), (q00,a01,q00,a10,→), 
(q00,a10,q01,a01, ←), (q00,a11,q01,a10,←), 
(q01,a00,q00,a01,→), (q01,a01,q01,a10,→), 
(q01,a10,q01,a11,←), (q01,a11,h10,a01,←)

state symbol δ

s � (q,�,� →)

s a (s,b,→)

s b (q,a, ←)

s c (q,b, ←)

q � (s,a,� →)

q a (q,b,→)

q b (q,b, ←)

q c (h,a, ←)

state/symbol representation

s q00

q q01

h h10

� a00

a a01

b a10

c a11

Enumerating Turing Machines

Theorem: There exists an infinite lexicographic 

enumeration of:

(a) All syntactically valid TMs.

(b) All syntactically valid TMs with specific input 

alphabet Σ.

(c) All syntactically valid TMs with specific input 

alphabet Σ and specific tape alphabet Γ.       



1/27/2012

23

Enumerating Turing Machines

Proof: Fix Σ = {(, ), a, q, y, n, 0, 1, comma, →, ←}, 

ordered as listed.  Then:

1. Lexicographically enumerate the strings in Σ*.

2. As each string s is generated, check to see whether

it is a syntactically valid Turing machine description.

If it is, output it.

To restrict the enumeration to symbols in sets Σ and Γ, 

check, in step 2, that only alphabets of the appropriate 

sizes are allowed.

We can now talk about the ith Turing machine. 

Another Win of Encoding

One big win of defining a way to encode any Turing machine M:  

● We can talk about operations on programs (TMs).  



1/27/2012

24

Example of a Transforming TM T:

Input: a TM M1 that reads its input tape and performs some operation 
P on it.  

Output: a TM M2 that performs P on an empty input tape.

Encoding Multiple Inputs

Let: 

<x1, x2, …xn> 

mean a single string that encodes the sequence of 

individual values:

x1, x2, …xn.



1/27/2012

25

On input <M, w>, U must:

● Halt iff M halts on w.

● If M is a deciding or semideciding machine, then:
● If M accepts, accept.
● If M rejects, reject.

● If M computes a function, then U(<M, w>) must equal M(w).

The Specification of the Universal TM

U will use 3 tapes:

● Tape 1: M’s tape.  

● Tape 2: <M>, the “program” that U is running.

● Tape 3: M’s state.

How U Works



1/27/2012

26

The Universal TM

Initialization of U:
1. Copy <M> onto tape 2.
2. Look at <M>, figure out what i is, and write the encoding of state 

s on tape 3.

After initialization:

The Operation of U

Simulate the steps of M :
1. Until M would halt do:

1.1 Scan tape 2 for a quintuple that matches the current state, 
input pair. 

1.2 Perform the associated action, by changing tapes 1 and 3.  If 
necessary, extend the tape.

1.3 If no matching quintuple found, halt.  Else loop.
2. Report the same result M would report.

How long does U take?



1/27/2012

27

If A Universal Machine is Such a Good Idea …

Could we define a Universal Finite State Machine?

Such a FSM would accept the language:

L = {<F, w> : F is a FSM, and w ∈ L(F) }


