
1/26/2012

1

MA/CSSE 474
Theory of Computation

Turing Machines Intro

Languages and Machines
SD

D

Context-Free
Languages

Regular
Languages
reg exps

FSMs

cfgs
PDAs

unrestricted grammars
Turing Machines

1/26/2012

2

SD Language

Unrestricted
Grammar

Turing
Machine

L

Accepts

Grammars, SD Languages, and Turing Machines

Turing Machines

We want a new kind of automaton:

● powerful enough to describe all computable things

unlike FSMs and PDAs.

● simple enough that we can reason formally about it
like FSMs and PDAs,
unlike real computers.

Goal: Be able to prove things about what can and
cannot be computed.

1/26/2012

3

Turing Machines

At each step, the machine must:

● choose its next state,
● write on the current square, and
●move left or right.

A Formal Definition

A (deterministic) Turing machine M is (K, Σ, Γ, δ, s, H):

● K is a finite set of states;
● Σ is the input alphabet, which does not contain �;
● Γ is the tape alphabet, which must contain � and have Σ as a

subset.
● s ∈ K is the initial state;
● H ⊆ K is the set of halting states;
● δ is the transition function:

(K - H) × Γ to K × Γ × {→, ←}

non-halting × tape → state × tape × direction to move
state char char (R or L)

1/26/2012

4

Notes on the TM Definition

1. The input tape is infinite in both directions.

2. The machine starts at the blank square just to the left of the
first input character.

2. δ is a function, not a relation. So this is a definition for
deterministic Turing machines.

3. δ must be defined for all (state, input) pairs unless the state
is a halting state.

4. Turing machines do not necessarily halt (unlike FSM's and
most PDAs). Why? To halt, they must enter a halting state.
Otherwise they loop.

5. Turing machines generate output, so they can compute
functions.

An Example

M takes as input a string in the language:

{aibj, 0 ≤ j ≤ i},

and adds b’s as required to make the number of b’s equal the number
of a’s.

The input to M will look like this:

The output should be:

1/26/2012

5

The Details

K = {1, 2, 3, 4, 5, 6}, Σ = {a, b}, Γ = {a, b, �, $, #},

s = 1, H = {6}, δ =

Start with a
string of the form
aibj, 0 ≤≤≤≤ j ≤≤≤≤ i, end

with aibi.

Notes on Programming

The machine has a strong procedural feel, with one phase
coming after another.

There are common idioms, like scan left until you find a
blank

There are two common ways to scan back and forth
marking things off.

Often there is a final phase to fix up the output.

Even a very simple machine is a nuisance to write.

1/26/2012

6

Halting

● A DFSM M, on input w, is guaranteed to halt in |w| steps.

● A PDA M, on input w, is not guaranteed to halt. To see
why, consider again M =

But there exists an algorithm to construct an equivalent PDA
M′ that is guaranteed to halt.

A TM M, on input w, is not guaranteed to halt. And there is no
algorithm that, given a TM M, will always construct an equivalent
TM that is guaranteed to halt.

Formalizing the Operation

A configuration of a Turing machine

M = (K, Σ, Γ, s, H) is an element of:

K × ((Γ- {�}) Γ*) ∪ {ε} × Γ × (Γ* (Γ- {�})) ∪ {ε}

state up current after
to current square current

square square

1/26/2012

7

Example Configurations

(1) (q, ab, b, b) = (q, abbb)
(2) (q, ε, �, aabb) = (q, �aabb)

Initial configuration is (s, �w).

b

Yields

(q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via δ, in one step.

For any TM M, let |-M* be the reflexive, transitive closure of |-M.

Configuration C1 yields configuration C2 if: C1 |-M* C2.

A path through M is a sequence of configurations C0, C1, …, Cn

for some n ≥ 0 such that C0 is the initial configuration and:

C0 |-M C1 |-M C2 |-M … |-M Cn.

A computation by M is a path that halts.

If a computation is of length n (has n steps), we write:

C0 |-M
n Cn

1/26/2012

8

Exercise

A TM to recognize { wwR : w ∈ {a, b}* }.

If the input string is in the language, the
machine should halt with y as its current
tape symbol

If not, it should halt with n as its current
tape symbol.

The final symbols on the rest of the tape
may be anything.

TMs are complicated

• … and low-level!

• We need higher-level "abbreviations".

– Macros

– Subroutines

1/26/2012

9

A Macro language for Turing Machines

(1) Define some basic machines

● Symbol writing machines

For each x ∈ Γ, define Mx, written just x, to be a machine
that writes x.

● Head moving machines

R: for each x ∈ Γ, δ(s, x) = (h, x, →)
L: for each x ∈ Γ, δ(s, x) = (h, x, ←)

●Machines that simply halt:
h, which simply halts (don't care whether it accepts).
n, which halts and rejects.
y, which halts and accepts.

Turing Machines Macros Cont'd

Example:

>M1 a M2

b

M3

● Start in the start state of M1.
● Compute until M1 reaches a halt state.
● Examine the tape and take the appropriate transition.
● Start in the start state of the next machine, etc.
● Halt if any component reaches a halt state and has no place

to go.
● If any component fails to halt, then the entire machine may fail

to halt.

