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Bottom-up Parsing
CFL Closure properties

Decision Problems
Turing Machine Introduction

MA/CSSE 474
Theory of Computation

Bottom-Up PDA

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

Reduce Transitions:
(1)   (p, ε, T + E), (p, E)
(2)   (p, ε, T), (p, E)
(3)   (p, ε, F ∗ T), (p, T)
(4)   (p, ε, F), (p, T)
(5)   (p, ε, )E( ), (p, F)
(6)   (p, ε, id), (p, F)

Shift Transitions:
(7)   (p, id, ε), (p, id) 
(8)   (p, (, ε), (p, () 
(9)   (p, ), ε), (p, )) 
(10) (p, +, ε), (p, +) 
(11) (p, ∗, ε), (p, ∗) 

The idea:  Let the stack keep track of what has been found.

Discover a rightmost derivation in 
reverse order.  Start with the sentence 
and try to "pull it back" to S.

When the right side of a production is 
on the top of the stack, we can replace 
it by the left side of that production…

…or not!  That's where the nondeterminism comes in:  
choice between shift and reduce; choice between two reductions.  
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A Bottom-Up Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

● The shift transitions: ((p, c, ε), (p, c)), for each c ∈ Σ.

● The reduce transitions: ((p, ε, (s1s2…sn.)
R), (p, X)), for each rule 

X → s1s2…sn. in G.

● The finish up transition: ((p, ε, S), (q, ε)).

Sketch of PDA→CFG

Lemma: If a language is accepted by a pushdown automaton M, it is 
context-free (i.e., it can be described by a context-free grammar).

Proof (by construction):

Step 1: Convert M to restricted normal form:

● M has a start state s′ that does nothing except push a special 
symbol # onto the stack and then transfer to a state s from which 
the rest of the computation begins.  There must be no transitions 
back to s′.

● M has a single accepting state a.  All transitions into a pop # and    
read no input.

● Every transition in M, except the one from s′, pops exactly one 
symbol from the stack.
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Second Step - Creating the Productions

Example:     WcWR

M = 

The basic idea –

simulate a leftmost derivation of M on any input string.

Step 2 - Creating the Productions

Example:

abcba

The basic idea: A leftmost derivation simulates the 
actions of M on an input string.
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Halting

It is possible that a PDA may
● not halt, 
● not ever finish reading its input.   

Let Σ = {a} and consider M = 

L(M) = {a}:  (1, a, ε) |- (2, a, a) |- (3, ε, ε) 

On any other input except a: 

● M will never halt.  
● M will never finish reading its input unless its input is ε.  

Nondeterminism and Decisions

1. There are context-free languages for which no 
deterministic PDA exists. 

2. It is possible that a PDA may
● not halt, 
● not ever finish reading its input.
● require time that is exponential in the length of its 

input.

3. There is no PDA minimization  algorithm.
It is undecidable whether a PDA is minimal.
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Solutions to the Problem

● For NDFSMs:
● Convert to deterministic, or
● Simulate all paths in parallel.

● For NDPDAs:
● No general solution.
● Formal solutions that usually involve changing the

grammar.
● Such as Chomsky or Greibach Normal form.

● Practical solutions that:
● Preserve the structure of the grammar, but
● Only work on a subset of the CFLs.

● In HW, we see that Acceptance by "accepting tate" only 
is equivalent to acceptance by empty stack and 
accepting state. 

● FSM plus FIFO queue (instead of stack)?

● FSM plus two stacks?

What About These Variations?
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Comparing Regular and 
Context-Free Languages

Regular Languages Context-Free Languages
● regular exprs.

or
regular grammars ● context-free  grammars

● recognize ● parse
● = DFSMs ● = NDPDAs

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

●Union

●Concatenation

● Kleene star

●Reverse Let G1 = (V1, Σ1, R1, S1), and
G2 = (V2, Σ2, R2, S2) 

generate languages L1 and L2
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Closure Under Intersection

The context-free languages are not closed under 
intersection:  

The proof is by counterexample.  Let:

L1 = {anbncm: n, m ≥ 0}     /* equal a’s and b’s.
L2 = {ambncn: n, m ≥ 0}     /* equal b’s and c’s.

Both L1 and L2 are context-free, since there exist 
straightforward context-free grammars for them.

But now consider:
L = L1 ∩ L2

= {anbncn: n ≥ 0}

Recall: Closed under union but not 
closed under intersection implies 
not closed under complement.
And we saw a specific example of a 
CFL whose complement was not 
CF.

The Intersection of a Context-Free Language 

and a Regular Language is Context-Free

L = L(M1), a PDA = (K1, Σ, Γ1, ∆1, s1, A1).
R = L(M2), a deterministic FSM = (K2, Σ, δ, s2, A2).

We construct a new PDA, M3, that accepts L ∩ R by simulating the 
parallel execution of M1 and M2.

M = (K1 × K2, Σ, Γ1, ∆, (s1, s2), A1 × A2).

Insert into ∆:

For each rule  ((q1, a, β), (p1, γ)) in ∆1,
and each rule  ( q2, a, p2)            in δ, 
∆ contains      (([q1, q2]  a, β), ([p1, p2], γ)).

For each rule   ((q1, ε, β),  (p1, γ) in ∆1,
and each state   q2 in K2, 
∆ contains      (([q1, q2], ε, β), ([p1, q2], γ)).

This works because: we can get away with only one stack.

I use square brackets 
for ordered pairs of 
states from K1 × K2, to 
distinguish them from 
the tuples that are 
part of the notations 
for transitions in M1, 
M2, and M.
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Why are the Context-Free Languages Not 
Closed under Complement, Intersection and 
Subtraction But the Regular Languages Are?

Given an NDFSM M1, build an FSM M2 such that 
L(M2) = ¬L(M1):

1. From M1, construct an equivalent deterministic FSM M′, 
using ndfsmtodfsm.  

2. If M′ is described with an implied dead state, add the dead   
state  and all required transitions to it.  

3. Begin building M2 by setting it equal to M′.  Then swap the 
accepting and the nonaccepting states.  So:

M2 = (KM′, Σ, δM′, sM′, KM′ - AM′). 

We could do the same thing for CF languages if we could do 
step 1, but we can’t.

The need for nondeterminism is the key.

DCFL Properties (skip the details)

.

The Deterministic CF Languages are closed under complement.

The Deterministic CF Languages are not closed under 
intersection or union.
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The CFL Hierarchy

Context-Free Languages Over 
a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter 
alphabet is regular.

Proof: Requires Parikh’s Theorem, which we are 
skipping



1/24/2012

10

Algorithms and Decision 
Procedures for 

Context-Free Languages

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free 

grammar G that generates it.  Try derivations in G and see 
whether any of them generates w.

Problem (later slide):

● If L is context-free, then there exists some PDA M that 
accepts it.  Run M on w.

Problem (later slide):
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Decision Procedures for CFLs

Membership:  Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free 

grammar G that generates it.  Try derivations in G and see 
whether any of them generates w.

S →→→→ S T | a Try to derive  aaa

S

S T

S     T

Decision Procedures for CFLs

Membership:  Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free 

grammar G that generates it.  Try derivations in G and see 
whether any of them generates w.

Problem:

● If L is context-free, then there exists some PDA M that 
accepts it.  Run M on w.

Problem:



1/24/2012

12

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1. If given a PDA, build G so that L(G) = L(M).

2. If w = ε then if SG is nullable then accept, else reject.

3. If w ≠ ε then:
3.1 Construct G′ in Chomsky normal form  such that 

L(G′) = L(G) – {ε}.

3.2 If G derives w, it does so in 2⋅|w| - 1 steps.  Try all
derivations in G of  2⋅|w| - 1 steps.  If one of them
derives w, accept.  Otherwise reject.

Using a PDA
Recall CFGtoPDAtopdown, which built:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:
● The start-up transition ((p, ε, ε), (q, S)).

● For each rule X → s1s2…sn. in R, the transition ((q, ε, X), (q, 
s1s2…sn)).

● For each character c ∈ Σ, the transition ((q, c, c), (q, ε)).

Can we make this work so there are no ε-transitions?  If every 
transition consumes an input character then M would have to 
halt after |w| steps.

Put the grammar into Greibach Normal form:
All rules are of the following form:
● X →→→→ a A, where a ∈∈∈∈ ΣΣΣΣ and A ∈∈∈∈ (V - ΣΣΣΣ)*.
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Greibach Normal Form
All rules are of the following form:

● X → a A, where a ∈ Σ and A ∈ (V - Σ)*.

No need to push the a and then immediately pop it.  

So M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

1. The start-up transitions:  
For each rule S → cs2…sn, the transition:

((p, c, ε), (q, s2…sn)).

2. For each rule X → cs2…sn (where c ∈ Σ and s2

through sn are elements of V - Σ), the transition:

((q, c, X), (q, s2…sn)) 

An Algorithm to Decide Whether M Accepts w

decideCFLusingPDA(L: CFL, w: string) =
1. If L is specified as a PDA, use PDAtoCFG to construct a 

grammar G such that L(G) = L(M).
2. If L is specified as a grammar G, simply use G.
3. If w = ε then if SG is nullable then accept, otherwise reject.
4. If w ≠ ε then:

4.1 From G, construct G′ such that L(G′) = L(G) – {ε} and 
G′ is in Greibach normal form.

4.2 From G′ construct a PDA M such that L(M) = L(G′) 
and M′ has no ε-transitions.

4.3 All paths of M are guaranteed to halt within a finite   
number of steps.  So run M on w.  Accept if it accepts   
and reject otherwise.

Each individual path of M must halt within |w| steps.  
● The total number of paths pursued by M must be 
less than or equal to P = B|w|, where B is the 
maximum number of competing transitions from 
any state in M.
● The total number of steps that will be executed by    
all paths of M is bounded by P ∗ |w|.



1/24/2012

14

Emptiness

Given a context-free language L, is L = ∅?

decideCFLempty(G: context-free grammar) =

1. Let G′ = removeunproductive(G).

2. If S is not present in G′ then return True

else return  False. 

Finiteness

Given a context-free language L, is L infinite?

decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in Σ* of length 
greater than bn and less than or equal to bn+1 + bn.  

2. If, for any such string w, decideCFL(L, w) returns True
then return True.  L is infinite.

3. If, for all such strings w, decideCFL(L, w) returns False
then return False.  L is not infinite.

Why these bounds?
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Equivalence of DCFLs

Theorem: Given two deterministic context-free languages
L1 and L2, there exists a decision procedure to determine
whether L1 = L2.

Proof: Given in [Sénizergues 2001].

Some Undecidable Questions about CFLs

● Is L = Σ*?

● Is the complement of L context-free?

● Is L regular?

● Is L1 = L2?

● Is L1 ⊆ L2?

● Is L1 ∩ L2 = ∅?

● Is L inherently ambiguous?

● Is G ambiguous?
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Regular and CF Languages

Regular Languages Context-Free Languages

● regular exprs. ● context-free grammars
● or

● regular grammars
● = DFSMs ● = NDPDAs
● recognize ● parse
● minimize FSMs ● find unambiguous grammars

● reduce nondeterminism in PDAs
● find efficient parsers

● closed under: ● closed under:
♦ concatenation ♦ concatenation
♦ union ♦ union
♦ Kleene star ♦ Kleene star
♦ complement
♦ intersection ♦ intersection w/ reg. langs

● pumping theorem ● pumping theorem
● D = ND ● D ≠ ND

Languages and Machines
SD

D

Context-Free
Languages

Regular
Languages
reg exps

FSMs

cfgs        
PDAs

unrestricted grammars
Turing Machines
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SD Language

Unrestricted 
Grammar

Turing  
Machine

L

Accepts

Grammars, SD Languages, and Turing Machines

Turing Machines

We want a new kind of automaton:

● powerful enough to describe all computable things

unlike FSMs and PDAs.

● simple enough that we can reason formally about it
like FSMs and PDAs,
unlike real computers.

Goal:  Be able to prove things about what can and   
cannot be computed.
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Turing Machines

At each step, the machine must:

● choose its next state, 
● write on the current square, and
●move left or right.

A Formal Definition

A (deterministic) Turing machine M is  (K, Σ, Γ, δ, s, H):

● K is a finite set of states;
● Σ is the input alphabet, which does not contain �;
● Γ is the tape alphabet, which must contain � and have Σ as a 

subset.  
● s ∈ K is the initial state;
● H ⊆ K is the set of halting states;
● δ is the transition function:

(K - H)         × Γ to       K × Γ × {→, ←}

non-halting  × tape    → state × tape    × direction to move
state              char char (R or L)



1/24/2012

19

Notes on the Definition

1. The input tape is infinite in both directions.

2. δ is a function, not a relation.  So this is a definition for 
deterministic Turing machines.

3. δ must be defined for all (state, input) pairs unless the state 
is a halting state.

4. Turing machines do not necessarily halt (unlike FSM's and  
most PDAs).  Why?  To halt, they must enter a halting state.  
Otherwise they loop.

5. Turing machines generate output, so they can compute 
functions.

An Example

M takes as input a string in the language:

{aibj, 0 ≤ j ≤ i}, 

and adds b’s as required to make the number of b’s equal the number 
of a’s.  

The input to M will look like this:

The output should be:
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The Details

K = {1, 2, 3, 4, 5, 6}, Σ = {a, b}, Γ = {a, b, �, $, #}, 

s = 1, H = {6}, δ =

Notes on Programming

The machine has a strong procedural feel, with one phase 
coming after another.

There are common idioms, like scan left until you find a 
blank

There are two common ways to scan back and forth 
marking things off.

Often there is a final phase to fix up the output.

Even a very simple machine is a nuisance to write.
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Halting

● A DFSM M, on input w, is guaranteed to halt in |w| steps.

● A PDA M, on input w, is not guaranteed to halt.  To see 
why, consider again M =

But there exists an algorithm to construct an equivalent PDA 
M′ that is guaranteed to halt.

A TM M, on input w, is not guaranteed to halt. And there is no 
algorithm to construct an equivalent TM that is guaranteed to halt.


