Bottom-up Parsing
CFL Closure properties
Decision Problems
Turing Machine Introduction

Bottom-Up PDA

The idea: Let the stack keep track of what has been found.
(1) $E \rightarrow E+T \quad$ Discover a rightmost derivation in
(2) $E \rightarrow T \quad$ reverse order. Start with the sentence
(3) $T \rightarrow T * F$ and try to "pull it back" to S.

(4) $T \rightarrow F$
(5) $F \rightarrow(E)$
(6) $F \rightarrow i d$

Shift Transitions:

Reduce Transitions:
(1) $(p, \varepsilon, T+E),(p, E)$
(2) $(p, \varepsilon, T),(p, E)$
(3) $(p, \varepsilon, F * T),(p, T)$
(4) $(p, \varepsilon, F),(p, T)$
(5) $(p, \varepsilon) E(),,(p, F)$
(6) $(p, \varepsilon$, id),(p, F)
(7) $(p$, id, $\varepsilon),(p$, id)
(8) $(p,(, \varepsilon),(p,()$
(9) $(p),, \varepsilon),(p)$,
(10) $(p,+, \varepsilon),(p,+)$
(11) $(p, *, \varepsilon),(p, *)$

When the right side of a production is on the top of the stack, we can replace it by the left side of that production...
...or not! That's where the nondeterminism comes in:
choice between shift and reduce; choice between two reductions.

A Bottom-Up Parser

The outline of M is:

$M=(\{p, q\}, \Sigma, V, \Delta, p,\{q\})$, where Δ contains:

- The shift transitions: $((p, c, \varepsilon),(p, c))$, for each $c \in \Sigma$.
- The reduce transitions: $\left(\left(p, \varepsilon,\left(s_{1} s_{2} \ldots s_{n} .\right)^{\mathrm{R}}\right),(p, X)\right)$, for each rule $X \rightarrow s_{1} s_{2} \ldots s_{n}$. in G.
- The finish up transition: $((p, \varepsilon, S),(q, \varepsilon))$.

[^0]
Second Step - Creating the Productions

Example: $\mathrm{W} \subset \mathrm{W}^{\mathrm{R}}$
$M=$

The basic idea -
simulate a leftmost derivation of M on any input string.

Halting

It is possible that a PDA may

- not halt,
- not ever finish reading its input.

Let $\Sigma=\{a\}$ and consider $M=$

$L(M)=\{a\}:(1, a, \varepsilon)|-(2, a, a)|-(3, \varepsilon, \varepsilon)$
On any other input except a:

- M will never halt.
- M will never finish reading its input unless its input is ε.

Nondeterminism and Decisions

1. There are context-free languages for which no deterministic PDA exists.
2. It is possible that a PDA may

- not halt,
- not ever finish reading its input.
- require time that is exponential in the length of its input.

3. There is no PDA minimization algorithm. It is undecidable whether a PDA is minimal.

Solutions to the Problem

- For NDFSMs:
- Convert to deterministic, or
- Simulate all paths in parallel.
- For NDPDAs:
- No general solution.
- Formal solutions that usually involve changing the grammar.
- Such as Chomsky or Greibach Normal form.
- Practical solutions that:
- Preserve the structure of the grammar, but
- Only work on a subset of the CFLs.

What About These Variations?

- In HW, we see that Acceptance by "accepting tate" only is equivalent to acceptance by empty stack and accepting state.
- FSM plus FIFO queue (instead of stack)?
- FSM plus two stacks?

Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

- regular exprs.
or
regular grammars • context-free grammars
- recognize
- = DFSMs
- parse
- = NDPDAs

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

- Union
- Concatenation
- Kleene star
- Reverse

$$
\begin{aligned}
& \text { Let } G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right) \text {, and } \\
& G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right) \\
& \text { generate languages } L_{1} \text { and } L_{2}
\end{aligned}
$$

Closure Under Intersection

The context-free languages are not closed under intersection:

The proof is by counterexample. Let:

$$
\begin{array}{ll}
L_{1}=\left\{a^{n} b^{n} C^{m}: n, m \geq 0\right\} & /^{*} \text { equal a's and b's. } \\
L_{2}=\left\{a^{m} b^{n} C^{n}: n, m \geq 0\right\} & /^{*} \text { equal b's and c's. }
\end{array}
$$

Both L_{1} and L_{2} are context-free, since there exist straightforward context-free grammars for them.

But now consider:
$L=L_{1} \cap L_{2}$ $=\left\{a^{n_{b}} b^{n}: n \geq 0\right\}$

Recall: Closed under union but not closed under intersection implies not closed under complement. And we saw a specific example of a
CFL whose complement was not CF.

* The Intersection of a Context-Free Language and a Regular Language is Context-Free

$L=L\left(M_{1}\right)$, a PDA $=\left(K_{1}, \Sigma, \Gamma_{1}, \Delta_{1}, s_{1}, A_{1}\right)$.
$R=L\left(M_{2}\right)$, a deterministic $\mathrm{FSM}=\left(K_{2}, \Sigma, \delta, s_{2}, A_{2}\right)$.
We construct a new PDA, M_{3}, that accepts $L \cap R$ by simulating the parallel execution of M_{1} and M_{2}.
$M=\left(K_{1} \times K_{2}, \Sigma, \Gamma_{1}, \Delta,\left(s_{1}, s_{2}\right), A_{1} \times A_{2}\right)$.
Insert into Δ :
For each rule $\left(\left(q_{1}, a, \beta\right),\left(p_{1}, \gamma\right)\right)$ in Δ_{1}, and each rule $\left(q_{2}, a, p_{2}\right) \quad$ in δ, Δ contains $\quad\left(\left(\left[q_{1}, q_{2}\right] a, \beta\right),\left(\left[p_{1}, p_{2}\right], \gamma\right)\right)$.
For each rule $\left(\left(q_{1}, \varepsilon, \beta\right),\left(p_{1}, \gamma\right)\right.$ in Δ_{1}, and each state q_{2} in K_{2},

I use square brackets for ordered pairs of states from $K_{1} \times K_{2}$, to distinguish them from the tuples that are part of the notations for transitions in M_{1}, M_{2}, and M .
Δ contains $\quad\left(\left(\left[q_{1}, q_{2}\right], \varepsilon, \beta\right),\left(\left[p_{1}, q_{2}\right], \gamma\right)\right)$.
This works because: we can get away with only one stack.

Why are the Context-Free Languages Not Closed under Complement, Intersection and Subtraction But the Regular Languages Are?

Given an NDFSM M_{1}, build an FSM M_{2} such that $L\left(M_{2}\right)=\neg L\left(M_{1}\right)$:

1. From M_{1}, construct an equivalent deterministic FSM M^{\prime}, using ndfsmtodfsm.
2. If M^{\prime} is described with an implied dead state, add the dead state and all required transitions to it.
3 . Begin building M_{2} by setting it equal to M^{\prime}. Then swap the accepting and the nonaccepting states. So:

$$
M_{2}=\left(K_{M^{\prime}}, \Sigma, \delta_{\mathrm{M}^{\prime}}, s_{\mathrm{M}^{\prime}}, K_{\mathrm{M}^{\prime}}-A_{\mathrm{M}^{\prime}}\right) .
$$

We could do the same thing for CF languages if we could do step 1, but we can't.

The need for nondeterminism is the key.

[^1]

Context-Free Languages Over a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.

Proof: Requires Parikh's Theorem, which we are skipping

Algorithms and Decision Procedures for Context-Free Languages

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L ?
Two approaches:

- If L is context-free, then there exists some context-free grammar G that generates it. Try derivations in G and see whether any of them generates w.

Problem (later slide):

- If L is context-free, then there exists some PDA M that accepts it. Run M on w.

Problem (later slide):

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L ?
Two approaches:

- If L is context-free, then there exists some context-free grammar G that generates it. Try derivations in G and see whether any of them generates w.
$S \rightarrow S T \mid a \quad$ Try to derive aaa

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L ?
Two approaches:

- If L is context-free, then there exists some context-free grammar G that generates it. Try derivations in G and see whether any of them generates w.

Problem:

- If L is context-free, then there exists some PDA M that accepts it. Run M on w.

Problem:

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1. If given a PDA, build G so that $L(G)=L(M)$.
2. If $w=\varepsilon$ then if S_{G} is nullable then accept, else reject.
3. If $w \neq \varepsilon$ then:
3.1 Construct G^{\prime} in Chomsky normal form such that $L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$.
3.2 If G derives w, it does so in $2 \cdot|w|-1$ steps. Try all derivations in G of $2 \cdot|w|-1$ steps. If one of them derives w, accept. Otherwise reject.

Using a PDA

Recall CFGtoPDAtopdown, which built:

$M=(\{p, q\}, \Sigma, V, \Delta, p,\{q\})$, where Δ contains:

- The start-up transition $((p, \varepsilon, \varepsilon),(q, S))$.
- For each rule $X \rightarrow s_{1} s_{2} \ldots s_{n}$. in R, the transition $((q, \varepsilon, X)$, $(q$, $\left.s_{1} s_{2} \ldots s_{n}\right)$).
- For each character $c \in \Sigma$, the transition (($q, c, c),(q, \varepsilon))$.

Can we make this work so there are no ε-transitions? If every transition consumes an input character then M would have to halt after $|w|$ steps.

Put the grammar into Greibach Normal form:
All rules are of the following form:

- $X \rightarrow a$ A, where $a \in \Sigma$ and $A \in(V-\Sigma)^{*}$.

Greibach Normal Form

All rules are of the following form:

- $X \rightarrow a A$, where $a \in \Sigma$ and $A \in(V-\Sigma)^{*}$.

No need to push the a and then immediately pop it.
So $M=(\{p, q\}, \Sigma, V, \Delta, p,\{q\})$, where Δ contains:

1. The start-up transitions:

For each rule $S \rightarrow c s_{2} \ldots s_{n}$, the transition:

$$
\left((p, c, \varepsilon),\left(q, s_{2} \ldots s_{n}\right)\right)
$$

2. For each rule $X \rightarrow C s_{2} \ldots s_{n}$ (where $c \in \Sigma$ and s_{2} through s_{n} are elements of $V-\Sigma$), the transition:

$$
\left((q, c, X),\left(q, s_{2} \ldots s_{n}\right)\right)
$$

An Algorithm to Decide Whether M Accepts w

decideCFLusingPDA(L: CFL, w: string) =

1. If L is specified as a PDA, use PDAtoCFG to construct a grammar G such that $L(G)=L(M)$.
2. If L is specified as a grammar G, simply use G.
3. If $w=\varepsilon$ then if S_{G} is nullable then accept, otherwise reject.
4. If $w \neq \varepsilon$ then:
4.1 From G, construct G^{\prime} such that $L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$ and G^{\prime} is in Greibach normal form.
4.2 From G^{\prime} construct a PDA M such that $L(M)=L\left(G^{\prime}\right)$ and M^{\prime} has no ε-transitions.
4.3 All paths of M are guaranteed to halt within a finite number of steps. So run M on w. Accept if it accepts and reject otherwise.

Each individual path of M must halt within $|w|$ steps.

- The total number of paths pursued by M must be less than or equal to $P=B^{|\omega|}$, where B is the maximum number of competing transitions from any state in M.
- The total number of steps that will be executed by all naths of M is hounded bv $P *|w|$

Emptiness

Given a context-free language L, is $L=\varnothing$?
decideCFLempty(G: context-free grammar) =

1. Let $G^{\prime}=$ removeunproductive(G).
2. If S is not present in G^{\prime} then return True
else return False.

Finiteness

Given a context-free language L, is L infinite?
decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in Σ^{*} of length greater than b^{n} and less than or equal to $b^{n+1}+b^{n}$.
2. If, for any such string w, decideCFL(L, w) returns True then return True. L is infinite.
3. If, for all such strings w, decideCFL(L, w) returns False then return False. L is not infinite.

Why these bounds?

Equivalence of DCFLs

Theorem: Given two deterministic context-free languages L_{1} and L_{2}, there exists a decision procedure to determine whether $L_{1}=L_{2}$.

Proof: Given in [Sénizergues 2001].

Some Undecidable Questions about CFLs

- Is $L=\Sigma^{*}$?
- Is the complement of L context-free?
- Is L regular?
- Is $L_{1}=L_{2}$?
- Is $L_{1} \subseteq L_{2}$?
- Is $L_{1} \cap L_{2}=\varnothing$?
- Is L inherently ambiguous?
- Is G ambiguous?

Regular and CF Languages

Regular Languages

- regular exprs.
- or
- regular grammars
- = DFSMs
- recognize
- minimize FSMs
- closed under:
- concatenation
- union
- Kleene star
- complement
- intersection
- pumping theorem
- $\mathrm{D}=\mathrm{ND}$

Context-Free Languages

- context-free grammars
- = NDPDAs
- parse
- find unambiguous grammars
- reduce nondeterminism in PDAs
- find efficient parsers
- closed under:
- concatenation
- union
- Kleene star
- intersection w/ reg. langs
- pumping theorem
- $\mathrm{D} \neq \mathrm{ND}$

Turing Machines

We want a new kind of automaton:

- powerful enough to describe all computable things unlike FSMs and PDAs.
- simple enough that we can reason formally about it like FSMs and PDAs, unlike real computers.

Goal: Be able to prove things about what can and cannot be computed.


```
* A Formal Definition
A (deterministic) Turing machine \(M\) is \((K, \Sigma, \Gamma, \delta, s, H)\) :
- \(K\) is a finite set of states;
- \(\Sigma\) is the input alphabet, which does not contain \(\square\);
- \(\Gamma\) is the tape alphabet, which must contain \(\square\) and have \(\Sigma\) as a subset.
- \(s \in K\) is the initial state;
- \(H \subseteq K\) is the set of halting states;
- \(\delta\) is the transition function:
\((K-H) \quad \times \Gamma \quad\) to \(K \times \Gamma \times \quad\{\rightarrow, \leftarrow\}\)
\(\begin{array}{ll}\text { non-halting } \\ \text { state }\end{array} \times\) tape \(\rightarrow\) state \(\times\) tape \(\quad \times \quad\) direction to move state char char (R or L)
```


Notes on the Definition

1. The input tape is infinite in both directions.
2. δ is a function, not a relation. So this is a definition for deterministic Turing machines.
3. δ must be defined for all (state, input) pairs unless the state is a halting state.
4. Turing machines do not necessarily halt (unlike FSM's and most PDAs). Why? To halt, they must enter a halting state. Otherwise they loop.
5. Turing machines generate output, so they can compute functions.

An Example

M takes as input a string in the language:

$$
\left\{a^{\prime} b^{j}, 0 \leq j \leq i\right\},
$$

and adds b's as required to make the number of b's equal the number of a 's.
The input to M will look like this:

The output should be:

The Details

$s=1, H=\{6\}, \delta=$

Notes on Programming

The machine has a strong procedural feel, with one phase coming after another.

There are common idioms, like scan left until you find a blank

There are two common ways to scan back and forth marking things off.

Often there is a final phase to fix up the output.

Even a very simple machine is a nuisance to write.

Halting

- A DFSM M, on input w, is guaranteed to halt in $|w|$ steps.
- A PDA M, on input w, is not guaranteed to halt. To see why, consider again $M=$

But there exists an algorithm to construct an equivalent PDA M^{\prime} that is guaranteed to halt.

A TM M, on input w, is not guaranteed to halt. And there is no algorithm to construct an equivalent TM that is guaranteed to halt.

[^0]: 5

 ## Sketch of PDA \rightarrow CFG

 Lemma: If a language is accepted by a pushdown automaton M, it is context-free (i.e., it can be described by a context-free grammar).

 Proof (by construction):
 Step 1: Convert M to restricted normal form:

 - M has a start state s^{\prime} that does nothing except push a special symbol \# onto the stack and then transfer to a state s from which the rest of the computation begins. There must be no transitions back to s^{\prime}.
 - M has a single accepting state a. All transitions into a pop \# and read no input.
 - Every transition in M, except the one from s^{\prime}, pops exactly one symbol from the stack.

[^1]: DCFL Properties (skip the details)

 The Deterministic CF Languages are closed under complement.
 The Deterministic CF Languages are not closed under intersection or union.

