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PDAs and CFGs

Top-down and Bottom-up parsing

MA/CSSE 474
Theory of Computation

But first … another 
Pumping Theorem example

L = {anbman, n, m ≥ 0 and n ≥ m}. 

Let w = akbkak

aaa … aaabbb … bbbaaa … aaa

|        1       |        2 |       3        |
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Nested and Cross-Serial Dependencies

PalEven = {wwR : w ∈ {a, b}*}

a a b b a a

The dependencies are nested.

WcW = {wcw : w ∈ {a, b}*}

a a b c a a b

Cross-serial dependencies.

Some more examples for you to 
consider later

• On the next few slides
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Let w = akbkcakbk.  

aaa … aaabbb …  bbbcaaa … aaabbb … bbb

|         1 | 2 |3|        4         |         5       |

Call the part before c the left side and the part after c the right side.  

● If v or y overlaps region 3, set q to 0.  The resulting string will no 
longer contain a c.

● If both v and y occur before region 3 or they both occur after 
region 3, then set q to 2.   One side will be longer than the other.

● If either v or y overlaps region 1, then set q to 2.  In order to make 
the right side match, something would have to be pumped into 
region 4.  Violates |vxy| ≤ k. 

● If either v or y overlaps region 2, then set q to 2.  In order to make 
the right side match, something would have to be pumped into 
region 5.  Violates |vxy| ≤ k. 

WcW = {wcw : w ∈∈∈∈ {a, b}*}

• {(ab)nanbn : n > 0}

• {x#y : x, y ∈∈∈∈ {0, 1}* and x ≠≠≠≠ y}
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PDAs and Context-Free Grammars

Theorem:  The class of languages accepted by PDAs is 

exactly the class of context-free languages.

Recall: context-free languages are languages that 

can be genrated by context-free grammars.

The hard direction:   PDA → CFG (later)

The easy direction:  CFG → PDA

The idea:  Let the stack do the work.

Two approaches:

• Top-down

• Bottom-up

Top Down

The idea:  Let the stack keep track of expectations.

Example: Arithmetic expressions

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

(1)   (q, ε, E), (q, E+T) (7)   (q, id, id), (q, ε)
(2)   (q, ε, E), (q, T) (8)   (q, (, (  ), (q, ε)
(3)   (q, ε, T), (q, T*F) (9)   (q, ), )  ), (q, ε)
(4)   (q, ε, T), (q, F) (10) (q, +, +), (q, ε)
(5)   (q, ε, F), (q, (E) ) (11) (q, ∗, ∗), (q, ε)
(6)   (q, ε, F), (q, id) 
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A Top-Down Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

● The start-up transition ((p, ε, ε), (q, S)).

● For each rule X → s1s2…sn. in R, the transition: 

((q, ε, X), (q, s1s2…sn)).

● For each character c ∈ Σ, the transition:

((q, c, c), (q, ε)).

Example of the Construction
L = {anb*an}

0 (p, ε, ε), (q, S) 
(1) S → ε * 1 (q, ε, S), (q, ε)
(2) S → B 2 (q, ε, S), (q, B)
(3) S → aSa 3 (q, ε, S), (q, aSa)

(4) B → ε 4 (q, ε, B), (q, ε)
(5) B → bB 5 (q, ε, B), (q, bB)

6 (q, a, a), (q, ε)
input = a a b b a a 7 (q, b, b), (q, ε)
trans state unread input stack

p   a a b b a a ε

0 q a a b b a a S

3 q a a b b a a aSa

6 q a b b a a Sa

3 q a b b a a aSaa

6 q b b a a Saa

2 q b b a a Baa

5 q b b a a bBaa

7 q b a a Baa

5 q b a a bBaa

7 q a a Baa

4 q a a aa

6 q a a

6 q ε ε

This is here for 
later reference.  
We did a similar 
example with the 
expression 
grammar.
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Another Example : tracing practice

L = {anbmcpdq : m + n = p + q}

0   (p, ε, ε), (q, S)
(1) S → aSd 1   (q, ε, S), (q, aSd)

(2) S → T 2   (q, ε, S), (q, T)
(3) S → U 3   (q, ε, S), (q, U)
(4) T → aTc 4   (q, ε, T), (q, aTc)

(5) T → V 5   (q, ε, T), (q, V)
(6) U → bUd 6   (q, ε, U), (q, bUd)

(7) U → V 7   (q, ε, U), (q, V)
(8) V → bVc 8   (q, ε, V), (q, bVc)

(9) V → ε 9   (q, ε, V), (q, ε)
10 (q, a, a), (q, ε)
11 (q, b, b), (q, ε)

input = a a b c d d 12 (q, c, c), (q, ε)
13 (q, d, d), (q, ε)

trans state unread input stack

This is here for 
later reference.  
We did a similar 
example with the 
expression 
grammar.

Notice the Nondeterminism

Machines constructed with the algorithm are often nondeterministic, 
even when they needn't be.  This happens even with trivial 
languages.

Example:  AnBn = {anbn: n ≥ 0}

A grammar for AnBn is: A PDA M for AnBn is:

(0)  ((p, ε, ε), (q, S))
[1] S → aSb (1)  ((q, ε, S), (q, aSb))

[2] S → ε (2)  ((q, ε, S), (q, ε))
(3)  ((q, a, a), (q, ε)) 
(4)  ((q, b, b), (q, ε))

Transitions 1 and 2 make M nondeterministic.

The manually constructed machine for AnBn that we created last week 
is deterministic.
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Bottom-Up

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

Reduce Transitions:
(1)   (p, ε, T + E), (p, E)
(2)   (p, ε, T), (p, E)
(3)   (p, ε, F ∗ T), (p, T)
(4)   (p, ε, F), (p, T)
(5)   (p, ε, )E( ), (p, F)
(6)   (p, ε, id), (p, F)

Shift Transitions:
(7)   (p, id, ε), (p, id) 
(8)   (p, (, ε), (p, () 
(9)   (p, ), ε), (p, )) 
(10) (p, +, ε), (p, +) 
(11) (p, ∗, ε), (p, ∗) 

The idea:  Let the stack keep track of what has been found.

Discover a rightmost derivation in 
reverse order.  Start with the sentence 
and try to "pull it back" to S.

When the right side of a production is 
on the top of the stack, we can replace 
it by the left side of that production…

…or not!  That's where the nondeterminism comes in:  
choice between shift and reduce; choice between two reductions.  

A Bottom-Up Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

● The shift transitions: ((p, c, ε), (p, c)), for each c ∈ Σ.

● The reduce transitions: ((p, ε, (s1s2…sn.)
R), (p, X)), for each rule 

X → s1s2…sn. in G.

● The finish up transition: ((p, ε, S), (q, ε)).
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Sketch of PDA→CFG

Lemma: If a language is accepted by a pushdown automaton M, it is 
context-free (i.e., it can be described by a context-free grammar).

Proof (by construction):

Step 1: Convert M to restricted normal form:

● M has a start state s′ that does nothing except push a special 
symbol # onto the stack and then transfer to a state s from which 
the rest of the computation begins.  There must be no transitions 
back to s′.

● M has a single accepting state a.  All transitions into a pop # and    
read no input.

● Every transition in M, except the one from s′, pops exactly one 
symbol from the stack.

Second Step - Creating the Productions

Example:     WcWR

M = 

The basic idea –

simulate a leftmost derivation of M on any input string.
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Step 2 - Creating the Productions

Example:

abcba

The basic idea: A leftmost derivation simulates the 
actions of M on an input string.

Halting

It is possible that a PDA may
● not halt, 
● not ever finish reading its input.   

Let Σ = {a} and consider M = 

L(M) = {a}:  (1, a, ε) |- (2, a, a) |- (3, ε, ε) 

On any other input except a: 

● M will never halt.  
● M will never finish reading its input unless its input is ε.  
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Nondeterminism and Decisions

1. There are context-free languages for which no 

deterministic PDA exists. 

2. It is possible that a PDA may

● not halt, 

● not ever finish reading its input.

● require time that is exponential in the length of its 

input.

3. There is no PDA minimization  algorithm.

It is undecidable whether a PDA is minimal.

Solutions to the Problem

● For NDFSMs:

● Convert to deterministic, or

● Simulate all paths in parallel.

● For NDPDAs:

● No general solution.

● Formal solutions that usually involve changing the

grammar.

● Such as Chomsky or Greibach Normal form.

● Practical solutions that:

● Preserve the structure of the grammar, but

● Only work on a subset of the CFLs.
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Alternative Equivalent Definitions of a 
PDA

Accept by accepting state at end of string (i.e., we don't 

care about the stack).

From M (in our definition) we build M′ (in this one): 

1. Initially, let M′ = M.

2. Create a new start state s′.  Add the transition:

((s′, ε, ε), (s, #)).

3. Create a new accepting state qa.  

4. For each accepting state a in M do,

4.1 Add the transition ((a, ε, #), (qa, ε)).

5. Make qa the only accepting state in M′.

Example

The balanced parentheses language
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● FSM plus FIFO queue (instead of stack)?

● FSM plus two stacks?

What About These?

Comparing Regular and 
Context-Free Languages

Regular Languages Context-Free Languages
● regular exprs.

or

regular grammars ● context-free  grammars

● recognize ● parse

● = DFSMs ● = NDPDAs


