N 2B RAU S ML
SRR o e TS,

RN

ek SEERY RO T

MA/CSSE 474
Theory of Computation

PDAs and CFGs

% ¢ Top-down and Bottom-up parsing

S s rfl\é;; - -‘-‘:\'t‘:;?-' e ohi walet
ARSI R R A SR TR e e

But first ... another
Pumping Theorem example

L ={a"ma" n,m>0and n> m}.
Let w = akpkak

aaa ... aaabbb ... bbbaaa ... aaa

2 13

1/22/2012

- Nested and Cross-Serial Dependencies
. PalEven= {wnf: we {a, b}

aabbaa

BB TFRRT
E

Cross-serial dependencies.

-Some more examples for you to
consider later
: :3 On the next few slides

-,

1/22/2012

N
)

s P

ARSI R R A IR R TR e e

WcW = {wew: we {a, b}*}

Let w = a*bkcakpk,

aaa .. aaabbb .. bbbcaaa .. aaabbb .. bbb
[2 B3 4 | 5 |

Call the part before c the left side and the part after c the right side.

o If vor yoverlaps region 3, set gto 0. The resulting string will no
longer contain a c.

e If both vand y occur before region 3 or they both occur after
region 3, then set gto 2. One side will be longer than the other.

o If either v or y overlaps region 1, then set gto 2. In order to make
the right side match, something would have to be pumped into
region 4. Violates |vxy| < k.

o If either v or y overlaps region 2, then set gto 2. In order to make
the right side match, something would have to be pumped into
region 5. Violates |vxy| < k.

RS

1/22/2012

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is
exactly the class of context-free languages.

Recall: context-free languages are languages that
can be genrated by context-free grammars.

The hard direction: PDA — CFG (later)
The easy direction: CFG — PDA
The idea: Let the stack do the work.
Two approaches:

» Top-down

+ Bottom-up

Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

E—-E+T

E->T

T>TxF il
T—F)

F— (E) \O p
F—id (’"" _____________________________
(1) (q.& E), (q E+T) (7) (q,id, id), (g, €)

(2) (q.&E),(q T) @) (a.(()(g¢

(3) (q.& T),(q TF) © (a.),)). (q¢

4) (q.&,7),(q F) (10) (g, +, +), (g,)

(5) (q.& F),(q.(B)) (11) (q. %, %), (q. &)

(6) (q.¢ F),(q, id)

1/22/2012

A Top-Down Parser

The outline of Mis:

all but the first of the transitions described below
@ :

M=({p, g, L, V, A, p,{q}), where A contains:
e The start-up transition ((p, €, €), (g, S)).

e For each rule X — s;8,...5,. in R, the transition:
(9. & X), (, 51S...5))).

e For each character c € X, the transition:
((g, ¢, 0, (q, £)).

Example of the Construction

L={a"v*a" This i
is is here for
0(p, e, 9), (0 5) SIS nere 1o
(1)S—>e * 1(a,& S), (g, € later reference.
g; g - BS g Eq, €, g; Eq, B)S \ We did a similar
— aoa q! s! ’ q! aoa H
(4B e 4(qeB) (e CSXamplewithine
(5B —©B 5(q, & B), (g, ©B) expression
6 (g, a, a), (a, &) grammar.

input=a a b b a a 7 (9, b, b), (q, €)
trans state unread input stack

o] aabbaa €
0 q aabbaa S
3 q aabbaa aSa
6 q abbaa Sa
3 q abbaa aSaa
6 q bbaa Saa
2 q bbaa Baa
5 q bbaa bBaa
7 q baa Baa
5 q b aa bBaa
7 q aa Baa
4 q a a aa
6 q a a
6 q € €

1/22/2012

4=
-

R N IRTY AT ¥ S T
RS o v e L L
/ R A

Another Example : tracing practice

L={a"mcPd?: m+n=p+ q}

input=a a b ¢ d d

(e
o
&
S 2 220 0N R~rWON 2O

wnNn—+ o

trans state

(p. &, €), (g,)

(9.8 5), (g, 25d) o

(9.8, 9.(q. T This is here for
(@edalh later reference.
(@e 7). (q W We did a similar
(g.¢ U), (g bUd) example with the
(9.8 U),(q V) i

eV (gpve) EXpression

@& V) (q e grammar.

(9.2, a), (g, €

(9., b), (g, €)

(9. c.c). (a.8)

(9. d, d), (q. €

unread input stack

Notice the Nondeterminism

Machines constructed with the algorithm are often nondeterministic,

even when they needn't
languages.

be. This happens even with trivial

Example: A"B" = {a"b": n > 0}

A grammar for A"B" is:

[1]1S— aSb
2] S—¢

A PDA Mfor A"Bnis:

(0) ((p: &, €), (g, S))
(1) (9., S), (g, aSb))
(2) (9. 9), (g, €)
(3) (9.2, a), (g,)
(4) (((q

), (g, €
q! b! b)! ’ E))

Transitions 1 and 2 make M nondeterministic.

The manually constructed machine for A"B"that we created last week

is deterministic.

1/22/2012

Bottom-Up

The idea: Let the stack keep track of what has been found.

1) E— E+ T Discover a rightmost derivation in
E>T reverse order. Start with the sentence
T_ T« F andtry to "pullit back"” to S.

2)
2; T F e/E/e
N
SFoE W
6) . Z

Shift Transitions:
Reduce Transitions: (7) (p,id, ¢), (p, id)

(1) (& T+E),(p, E ®) (b (8, (p ()
@) (pe T, (p, B ©) (p). 8 (p))
(3) (p, €, F T) (p, T) (10) (p! +, E)! (p! +)
4) (p,g P, (p, T (11) (p, %, €), (p, *)
(5) (p,&)E(), (P, F) When the right side of a production is
(6) (p,e id), (p, F) on the top of the stack, we can replace

it by the left side of that production...

...or not! That's where the nondeterminism comes in:
choice between shift and reduce; choice between two reductions.

A Bottom-Up Parser

The outline of Mis:
e/S/e

M=({p, g}, X, V, A, p,{q}), where A contains:

all but the last of the
transitions described
below

e The shift transitions: ((p, ¢, €), (p, ¢)), foreach ce X.

e The reduce transitions: ((p, €, (5S...5,.)R), (p, X)), for each rule
X = §155...5,.in G.

e The finish up transition: ((p, €, S), (q, €)).

1/22/2012

Sketch of PDA—CFG

Lemma: If a language is accepted by a pushdown automaton M, it is
context-free (i.e., it can be described by a context-free grammar).

Proof (by construction):
Step 1: Convert Mto restricted normal form:

e M has a start state s’ that does nothing except push a special
symbol # onto the stack and then transfer to a state s from which
the rest of the computation begins. There must be no transitions

back to s'.

e Mhas a single accepting state a. All transitions into a pop # and
read no input.

e Every transition in M, except the one from s’, pops exactly one
symbol from the stack.

Second Step - Creating the Productions

Example: WcWR
M=

\ : e/c/#

[#+]

The basic idea —

simulate a leftmost derivation of M on any input string.

1/22/2012

I
-

Step 2 - Creating the Productions

The basic idea: A leftmost derivation simulates the
actions of M on an input string.

a/e/a afa/e

()
ESE = #
L s c{l”/ii"'/t) = | /_(\\H
() N \&
Example: b/=/b b/b/e_)
S
abcba |
<s, #, a> [2]
a <s, a, f>[4] <f, #, a>[6]
b <s, b, f>[3] <f.a,f>[7] £ <a, &, a>[10]
/\ |
C/)\p] i <f.e, f>[9] &
b <f, e f>[9] e

I

&

Halting
Itis possible that a PDA may

e not halt,
e not ever finish reading its input.

Let X = {a} and consider M =

efef/a a/a/e
0 =0 a0
h e/e/a

LM ={a}: (1,a,€)|-(2,a,a)|-(3, ¢ ¢

On any other input except a:
e M will never halt.
e M will never finish reading its input unless its input is &.

1/22/2012

Nondeterminism and Decisions

1. There are context-free languages for which no
deterministic PDA exists.

2. It is possible that a PDA may
e not halt,
e not ever finish reading its input.
e require time that is exponential in the length of its
input.

3. There is no PDA minimization algorithm.
It is undecidable whether a PDA is minimal.

Solutions to the Problem

e For NDFSMs:
e Convert to deterministic, or
e Simulate all paths in parallel.

e For NDPDAs:

e No general solution.

e Formal solutions that usually involve changing the
grammar.
e Such as Chomsky or Greibach Normal form.

e Practical solutions that:
e Preserve the structure of the grammar, but
e Only work on a subset of the CFLs.

1/22/2012

10

1/22/2012

Alternative Equivalent Definitions of a
PDA

S Accept by accepting state at end of string (i.e., we don't
3 care about the stack).
i{

1. Initially, let M"= M.
2. Create a new start state s’. Add the transition:
(s, &, €), (s, #)).
3. Create a new accepting state q.,.
4. For each accepting state ain M do,
4.1 Add the transition ((a, €, #), (q., €)).
5. Make g, the only accepting state in M".

i From M (in our definition) we build M’ (in this one):

Example

The balanced parentheses language

becomes

11

What About These?
e FSM plus FIFO queue (instead of stack)?

e FSM plus two stacks?

Comparing Regular and
Context-Free Languages

Regular Languages Context-Free Languages
e regular exprs.
or
regular grammars e context-free grammars
e recognize e parse
e = DFSMs e = NDPDAs

1/22/2012

12

