
1/22/2012

1

PDAs and CFGs

Top-down and Bottom-up parsing

MA/CSSE 474
Theory of Computation

But first … another
Pumping Theorem example

L = {anbman, n, m ≥ 0 and n ≥ m}.

Let w = akbkak

aaa … aaabbb … bbbaaa … aaa

| 1 | 2 | 3 |

1/22/2012

2

Nested and Cross-Serial Dependencies

PalEven = {wwR : w ∈ {a, b}*}

a a b b a a

The dependencies are nested.

WcW = {wcw : w ∈ {a, b}*}

a a b c a a b

Cross-serial dependencies.

Some more examples for you to
consider later

• On the next few slides

1/22/2012

3

Let w = akbkcakbk.

aaa … aaabbb … bbbcaaa … aaabbb … bbb

| 1 | 2 |3| 4 | 5 |

Call the part before c the left side and the part after c the right side.

● If v or y overlaps region 3, set q to 0. The resulting string will no
longer contain a c.

● If both v and y occur before region 3 or they both occur after
region 3, then set q to 2. One side will be longer than the other.

● If either v or y overlaps region 1, then set q to 2. In order to make
the right side match, something would have to be pumped into
region 4. Violates |vxy| ≤ k.

● If either v or y overlaps region 2, then set q to 2. In order to make
the right side match, something would have to be pumped into
region 5. Violates |vxy| ≤ k.

WcW = {wcw : w ∈∈∈∈ {a, b}*}

• {(ab)nanbn : n > 0}

• {x#y : x, y ∈∈∈∈ {0, 1}* and x ≠≠≠≠ y}

1/22/2012

4

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is

exactly the class of context-free languages.

Recall: context-free languages are languages that

can be genrated by context-free grammars.

The hard direction: PDA → CFG (later)

The easy direction: CFG → PDA

The idea: Let the stack do the work.

Two approaches:

• Top-down

• Bottom-up

Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

(1) (q, ε, E), (q, E+T) (7) (q, id, id), (q, ε)
(2) (q, ε, E), (q, T) (8) (q, (, (), (q, ε)
(3) (q, ε, T), (q, T*F) (9) (q,),)), (q, ε)
(4) (q, ε, T), (q, F) (10) (q, +, +), (q, ε)
(5) (q, ε, F), (q, (E)) (11) (q, ∗, ∗), (q, ε)
(6) (q, ε, F), (q, id)

1/22/2012

5

A Top-Down Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

● The start-up transition ((p, ε, ε), (q, S)).

● For each rule X → s1s2…sn. in R, the transition:

((q, ε, X), (q, s1s2…sn)).

● For each character c ∈ Σ, the transition:

((q, c, c), (q, ε)).

Example of the Construction
L = {anb*an}

0 (p, ε, ε), (q, S)
(1) S → ε * 1 (q, ε, S), (q, ε)
(2) S → B 2 (q, ε, S), (q, B)
(3) S → aSa 3 (q, ε, S), (q, aSa)

(4) B → ε 4 (q, ε, B), (q, ε)
(5) B → bB 5 (q, ε, B), (q, bB)

6 (q, a, a), (q, ε)
input = a a b b a a 7 (q, b, b), (q, ε)
trans state unread input stack

p a a b b a a ε

0 q a a b b a a S

3 q a a b b a a aSa

6 q a b b a a Sa

3 q a b b a a aSaa

6 q b b a a Saa

2 q b b a a Baa

5 q b b a a bBaa

7 q b a a Baa

5 q b a a bBaa

7 q a a Baa

4 q a a aa

6 q a a

6 q ε ε

This is here for
later reference.
We did a similar
example with the
expression
grammar.

1/22/2012

6

Another Example : tracing practice

L = {anbmcpdq : m + n = p + q}

0 (p, ε, ε), (q, S)
(1) S → aSd 1 (q, ε, S), (q, aSd)

(2) S → T 2 (q, ε, S), (q, T)
(3) S → U 3 (q, ε, S), (q, U)
(4) T → aTc 4 (q, ε, T), (q, aTc)

(5) T → V 5 (q, ε, T), (q, V)
(6) U → bUd 6 (q, ε, U), (q, bUd)

(7) U → V 7 (q, ε, U), (q, V)
(8) V → bVc 8 (q, ε, V), (q, bVc)

(9) V → ε 9 (q, ε, V), (q, ε)
10 (q, a, a), (q, ε)
11 (q, b, b), (q, ε)

input = a a b c d d 12 (q, c, c), (q, ε)
13 (q, d, d), (q, ε)

trans state unread input stack

This is here for
later reference.
We did a similar
example with the
expression
grammar.

Notice the Nondeterminism

Machines constructed with the algorithm are often nondeterministic,
even when they needn't be. This happens even with trivial
languages.

Example: AnBn = {anbn: n ≥ 0}

A grammar for AnBn is: A PDA M for AnBn is:

(0) ((p, ε, ε), (q, S))
[1] S → aSb (1) ((q, ε, S), (q, aSb))

[2] S → ε (2) ((q, ε, S), (q, ε))
(3) ((q, a, a), (q, ε))
(4) ((q, b, b), (q, ε))

Transitions 1 and 2 make M nondeterministic.

The manually constructed machine for AnBn that we created last week
is deterministic.

1/22/2012

7

Bottom-Up

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

Reduce Transitions:
(1) (p, ε, T + E), (p, E)
(2) (p, ε, T), (p, E)
(3) (p, ε, F ∗ T), (p, T)
(4) (p, ε, F), (p, T)
(5) (p, ε,)E(), (p, F)
(6) (p, ε, id), (p, F)

Shift Transitions:
(7) (p, id, ε), (p, id)
(8) (p, (, ε), (p, ()
(9) (p,), ε), (p,))
(10) (p, +, ε), (p, +)
(11) (p, ∗, ε), (p, ∗)

The idea: Let the stack keep track of what has been found.

Discover a rightmost derivation in
reverse order. Start with the sentence
and try to "pull it back" to S.

When the right side of a production is
on the top of the stack, we can replace
it by the left side of that production…

…or not! That's where the nondeterminism comes in:
choice between shift and reduce; choice between two reductions.

A Bottom-Up Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

● The shift transitions: ((p, c, ε), (p, c)), for each c ∈ Σ.

● The reduce transitions: ((p, ε, (s1s2…sn.)
R), (p, X)), for each rule

X → s1s2…sn. in G.

● The finish up transition: ((p, ε, S), (q, ε)).

1/22/2012

8

Sketch of PDA→CFG

Lemma: If a language is accepted by a pushdown automaton M, it is
context-free (i.e., it can be described by a context-free grammar).

Proof (by construction):

Step 1: Convert M to restricted normal form:

● M has a start state s′ that does nothing except push a special
symbol # onto the stack and then transfer to a state s from which
the rest of the computation begins. There must be no transitions
back to s′.

● M has a single accepting state a. All transitions into a pop # and
read no input.

● Every transition in M, except the one from s′, pops exactly one
symbol from the stack.

Second Step - Creating the Productions

Example: WcWR

M =

The basic idea –

simulate a leftmost derivation of M on any input string.

1/22/2012

9

Step 2 - Creating the Productions

Example:

abcba

The basic idea: A leftmost derivation simulates the
actions of M on an input string.

Halting

It is possible that a PDA may
● not halt,
● not ever finish reading its input.

Let Σ = {a} and consider M =

L(M) = {a}: (1, a, ε) |- (2, a, a) |- (3, ε, ε)

On any other input except a:

● M will never halt.
● M will never finish reading its input unless its input is ε.

1/22/2012

10

Nondeterminism and Decisions

1. There are context-free languages for which no

deterministic PDA exists.

2. It is possible that a PDA may

● not halt,

● not ever finish reading its input.

● require time that is exponential in the length of its

input.

3. There is no PDA minimization algorithm.

It is undecidable whether a PDA is minimal.

Solutions to the Problem

● For NDFSMs:

● Convert to deterministic, or

● Simulate all paths in parallel.

● For NDPDAs:

● No general solution.

● Formal solutions that usually involve changing the

grammar.

● Such as Chomsky or Greibach Normal form.

● Practical solutions that:

● Preserve the structure of the grammar, but

● Only work on a subset of the CFLs.

1/22/2012

11

Alternative Equivalent Definitions of a
PDA

Accept by accepting state at end of string (i.e., we don't

care about the stack).

From M (in our definition) we build M′ (in this one):

1. Initially, let M′ = M.

2. Create a new start state s′. Add the transition:

((s′, ε, ε), (s, #)).

3. Create a new accepting state qa.

4. For each accepting state a in M do,

4.1 Add the transition ((a, ε, #), (qa, ε)).

5. Make qa the only accepting state in M′.

Example

The balanced parentheses language

1/22/2012

12

● FSM plus FIFO queue (instead of stack)?

● FSM plus two stacks?

What About These?

Comparing Regular and
Context-Free Languages

Regular Languages Context-Free Languages
● regular exprs.

or

regular grammars ● context-free grammars

● recognize ● parse

● = DFSMs ● = NDPDAs

