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CFG Pumping Theorem

PDA-CFG equivalence

MA/CSSE 474
Theory of Computation

For now we will assume that the languages 
generated by CFGs are the same as the 
languages accepted by PDAs.  Proof sketches 
later.

QUESTIONS?

(there is an exam tomorrow)
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Context-Free and 
Noncontext-Free Languages

How Many Context-Free Languages Are There?

Theorem: There is a countably infinite number of CFLs.

Proof: 

● Upper bound: we can lexicographically enumerate

all the CFGs.

● Lower bound: {a}, {aa}, {aaa}, … are all CFLs.

The number of languages is  uncountable.

Thus there are more languages than there are context-

free languages.

So there must exist some languages that are not context-

free.
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Languages That Are and 
Are Not Context-Free

a*b* is regular.

AnBn = {anbn : n ≥ 0} is context-free but not regular.

AnBnCn = {anbncn : n ≥ 0} is not context-free.

Is every regular language also context-free?

Closure properties:  

union, intersection, complement

intersection of CFL with a regular language

Showing that L is Context-Free

Techniques for showing that a language L is context-free:

1. Exhibit a context-free grammar for L.

2. Exhibit a PDA for L.

3. Use the closure properties of context-free languages.

Unfortunately, these are weaker than they are for

regular languages.
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Showing that L is Not Context-Free

Remember the pumping argument for regular 

languages:

A Review of Parse Trees

A parse tree, derived from a grammar G = (V, Σ, R, S), is 

a rooted, ordered tree in which:

● Every leaf node is labeled with an element of Σ ∪ {ε}, 

● The root node is labeled S, 

● Every other node is labeled with some element of V - Σ, 

● If m is a non-leaf node labeled X and the children of m

are labeled x1, x2, …, xn, then the rule X → x1 x2 … xn is 

in R.
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Some Tree Basics

The height h of a tree is the length of the longest path from the 
root to any leaf.

The branching factor b of a tree is the largest number of 
children associated with any node in the tree.

Theorem: The length of the yield of any tree T with height h
and branching factor b is ≤ bh.      Done in CSSE 230.

From Grammars to Trees
Given a context-free grammar G:

● Let n be the number of nonterminal symbols in G.
● Let b be the branching factor of G

Suppose that a tree T is generated by G and no nonterminal appears 
more than once on any path:

The maximum height of T is:

The maximum length of T’s yield is:
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The Context-Free Pumping Theorem

This time we use parse trees, not machines, as the basis for our 
argument.

Suppose L(G) contains a string w such that  |w| is greater than bn; 
then its parse tree must look like (for some nonterminal X):

Let T be a parse tree for w such that there is no other parse tree for w 
(generated from G) that has fewer nodes than T.

X[1] is the lowest place in 
the tree for which this 
happens.  
I.e., there is no other X in 
the derivation of x from X[2].

The Context-Free Pumping Theorem

There is another derivation in G:

S ⇒*  uXz ⇒*  uxz, 

in which, at the point labeled [1], the nonrecursive rule2 is used 
instead.  

So uxz is also in L(G).
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The Context-Free Pumping Theorem

There are infinitely many derivations in G, such as:

S ⇒*  uXz ⇒*  uvXyz ⇒*  uvvXyyz ⇒*  uvvxyyz

Those derivations produce the strings: 
uv2xy2z, uv3xy3z, uv4xy4z, …  

So all of those strings are also in L(G).

The Context-Free Pumping Theorem

If rule1 is X → Xa, we could have v = ε.

If rule1 is X → aX, we could have y = ε.

But it is not possible that both v and y are ε.  If they were, then the 
derivation S ⇒* uXz ⇒* uxz would also yield w and it would create a 
parse tree with fewer nodes.  But that contradicts the assumption that 
we started with a tree with the smallest possible number of nodes. 
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The Context-Free Pumping Theorem

The height of the subtree rooted at [1] is at most:

So |vxy| ≤ .

The Context-Free Pumping Theorem

If L is a context-free language, then

∃k ≥ 1       (∀ strings w ∈ L, where |w| ≥ k
(∃u, v, x, y, z (w = uvxyz,

vy ≠ ε, 
|vxy| ≤ k, and 
∀q ≥ 0 (uvqxyqz is in L)))).

Write it in 
contrapositive 
form
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Regular vs CF Pumping Theorems
Similarities:

● We don't get to choose k. 

● We choose w, the string to be pumped, based on k. 

● We don't get to choose how w is broken up (into xyz or uvxyz) 

● We choose a value for q that shows that w isn’t pumpable.

● We may apply closure theorems before we start.

Things that are different in CFL Pumping Theorem:

● Two regions, v and y, must be pumped in tandem.

● We don’t know anything about where in the strings v and y will 
fall.  All we know is that they are reasonably “close together”, i.e., 
|vxy| ≤ k.

● Either v or y could be empty, although not both. 

An Example of Pumping: AnBnCn

AnBnCn = {anbncn, n ≥0}

Choose  w = ak bk ck

1 | 2 | 3      (the regions: all a's, all b's, all c's)

If either v or y spans two regions, then let q = 2 (i.e., pump in 
once).  The resulting string will have letters out of order and 
thus not be in AnBnCn.

If both v and y each contain only one distinct character, set q to 
2.  Additional copies of at most two different characters are 
added, leaving the third unchanged.  
There are no longer equal numbers of the three letters, so 
the resulting string is not in AnBnCn. 
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An Example of Pumping: {    , n ≥≥≥≥0}

L = {   , n ≥ 0}

The elements of L:

a n
2

a
n2

n w

0 ε

1 a1

2 a4

3 a9

4 a16

5 a25

6 a36

An Example of Pumping: {    : n ≥≥≥≥0}

L = {   , n ≥ 0}.    For any given k > 0,

Let  n = k2, then n2 = k4.  Let w =        .

vy must be  ap, for some nonzero p.  

Set q to 2.  The resulting string, s, is            .  It must be in L.  But it 
isn’t because it is too short: 

w: next longer string in L:

(k2)2 a’s (k2 + 1)2 a’s
k4 a’s k4 + 2k2 + 1  a’s

For s to be in L, p = |vy| would have to be at least 2k2 + 1.  

But |vxy| ≤ k, so p can’t be that large.  
Thus s is not in L and L is not context-free.  

a
n

2

a
n2

4k
a

pka +
4
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Another Example of Pumping

L = {anbman, n, m ≥ 0 and n ≥ m}. 

Let w = akbkak

aaa … aaabbb … bbbaaa … aaa

|        1       |        2 |       3        |

Nested and Cross-Serial Dependencies

PalEven = {wwR : w ∈ {a, b}*}

a a b b a a

The dependencies are nested.

WcW = {wcw : w ∈ {a, b}*}

a a b c a a b

Cross-serial dependencies.
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Let w = akbkcakbk.  

aaa … aaabbb …  bbbcaaa … aaabbb … bbb

|         1 | 2 |3|        4         |         5       |

Call the part before c the left side and the part after c the right side.  

● If v or y overlaps region 3, set q to 0.  The resulting string will no 
longer contain a c.

● If both v and y occur before region 3 or they both occur after 
region 3, then set q to 2.   One side will be longer than the other.

● If either v or y overlaps region 1, then set q to 2.  In order to make 
the right side match, something would have to be pumped into 
region 4.  Violates |vxy| ≤ k. 

● If either v or y overlaps region 2, then set q to 2.  In order to make 
the right side match, something would have to be pumped into 
region 5.  Violates |vxy| ≤ k. 

WcW = {wcw : w ∈∈∈∈ {a, b}*}

Work with another student on 
these

• {(ab)nanbn : n > 0}

• {x#y : x, y ∈∈∈∈ {0, 1}* and x ≠≠≠≠ y}


