

Languages That Are and Are Not Context-Free

a*b* is regular.

A CASE A CASE

 $A^nB^n = \{a^n b^n : n \ge 0\}$ is context-free but not regular.

 $A^{n}B^{n}C^{n} = \{a^{n}b^{n}c^{n} : n \ge 0\}$ is not context-free.

Is every regular language also context-free?

Closure properties: union, intersection, complement intersection of CFL with a regular language

8

Regular vs CF Pumping Theorems

Similarities:

A STATE OF A

- We don't get to choose k.
- We choose *w*, the string to be pumped, based on k.
- We don't get to choose how w is broken up (into xyz or uvxyz)
- We choose a value for *q* that shows that *w* isn't pumpable.
- We may apply closure theorems before we start.

Things that are different in CFL Pumping Theorem:

- Two regions, v and y, must be pumped in tandem.
- We don't know anything about where in the strings *v* and *y* will fall. All we know is that they are reasonably "close together", i.e., $|vxy| \le k$.
- Either v or y could be empty, although not both.

AL.	An Example of Pumping: $\{a^{n^2}: n \ge 0\}$	
and a co	$L = \{a^{n^2}, n \ge 0\}.$ For a	ny given k > 0,
	Let $n = k^2$, then $n^2 = k^4$. Let $w = a^{k^4}$.	
	<i>vy</i> must be a^p , for some nonzero <i>p</i> .	
	Set <i>q</i> to 2. The resulting string, <i>s</i> , is a^{k^4+p} . It must be in <i>L</i> . But it isn't because it is too short:	
	W:	next longer string in L:
	(<i>k</i> ²)² a's <i>k</i> ⁴ a's	$(k^2 + 1)^2$ a's $k^4 + 2k^2 + 1$ a's
	For s to be in L, $p = vy $ would have to be at least $2k^2 + 1$.	
	But $ vxy \le k$, so p can't be that large. Thus s is not in L and L is not context-free.	

Nested and Cross-Serial Dependencies	
$PalEven = \{ww^{R} : w \in \{a, b\}^*\}$	
The dependencies are nested.	
$WcW = \{wcw: w \in \{a, b\}^*\}$ a a b c a a b U U Cross-serial dependencies.	

 $WcW = \{WcW : W \in \{a, b\}^*\}$ Let $w = a^k b^k c a^k b^k$. aaa ... aaabbb ... bbbcaaa ... aaabbb ... bbb 2 |3| 4 1 5 Call the part before c the left side and the part after c the right side. • If v or y overlaps region 3, set q to 0. The resulting string will no longer contain a c. • If both v and y occur before region 3 or they both occur after region 3, then set q to 2. One side will be longer than the other. • If either v or y overlaps region 1, then set q to 2. In order to make the right side match, something would have to be pumped into region 4. Violates $|vxy| \le k$. • If either v or y overlaps region 2, then set q to 2. In order to make the right side match, something would have to be pumped into region 5. Violates $|vxy| \le k$.

