

Recap: PDA Definition

 $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where:

K is a finite set of states

 Σ is the input alphabet Γ is the stack alphabet

 $s \in K$ is the initial state

 Σ and Γ are not necessarily disjoint

 $A \subseteq K$ is the set of accepting states, and Δ is the transition relation. It is a finite subset of

$$(\mathcal{K} \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (\mathcal{K} \times \Gamma^*)$$

Recap: Configurations and Yields

A configuration of M is an element of $K \times \Sigma^* \times \Gamma^*$. An initial configuration of M is (s, w, ε) , where w is the input string.

Let c be any element of $\Sigma \cup \{\epsilon\}$, Let γ_1 , γ_2 and γ be any elements of Γ^* , and Let w be any element of Σ^* . Then:

 $(q_{1},\ cw,\ \gamma_{1}\gamma)\mid_{^{-}M}(q_{2},\ w,\ \gamma_{2}\gamma)\ \text{iff}\ ((q_{1},\ c,\ \gamma_{1}),\ (q_{2},\ \gamma_{2}))\in\ \Delta.$

Let $|-_{M}^{*}$ be the reflexive, transitive closure of $|-_{M}$.

 C_1 *yields* configuration C_2 iff $C_1 \mid -M^* C_2$

Yields

Let c be any element of $\Sigma \cup \{\epsilon\}$, Let γ_1 , γ_2 and γ be any elements of Γ^* , and Let w be any element of Σ^* . Then:

 $(q_{1},\;cw,\,\gamma_{1}\gamma)\mid_{^{-}M}(q_{2},\;w,\,\gamma_{2}\gamma)\;\text{iff}\;((q_{1},\;c,\,\gamma_{1}),\,(q_{2},\,\gamma_{2}))\in\;\Delta.$

Let $|-_{M}^{*}$ be the reflexive, transitive closure of $|-_{M}$.

 C_1 *yields* configuration C_2 iff $C_1 \mid -M^* \mid C_2 \mid$

Recap: Computations and Acceptance

A *computation* by M is a finite sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε, γ) , for some state $q \in K_M$ and some string γ in Γ^* , and
- $C_0 \mid_{-M} C_1 \mid_{-M} C_2 \mid_{-M} \dots \mid_{-M} C_n$.

A computation C of M is an **accepting computation** iff:

 $C = (s, w, \varepsilon) \mid -M^* (q, \varepsilon, \varepsilon), \text{ and } q \in A.$

M accepts a string *w* iff at least one of its computations accepts.

Other paths may:

- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty.
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The *language accepted by M*, denoted *L(M)*, is the set of all strings accepted by *M*.

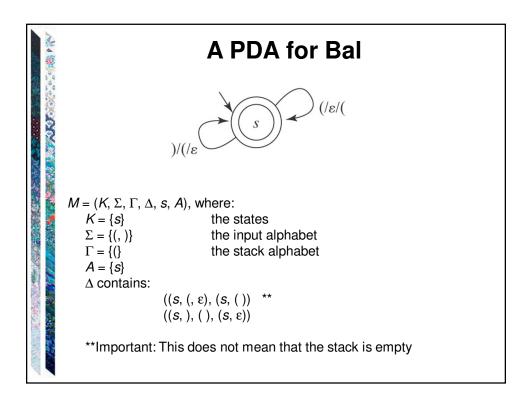
Rejecting

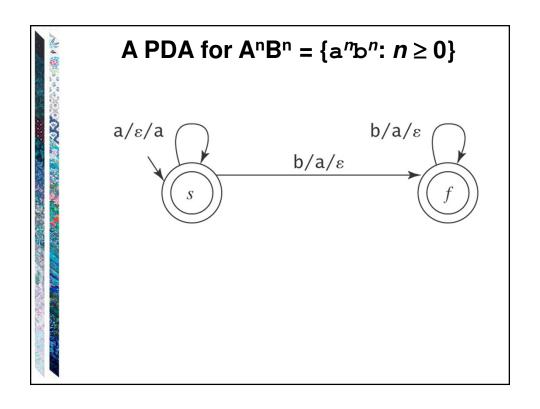
A computation C of M is a **rejecting computation** iff:

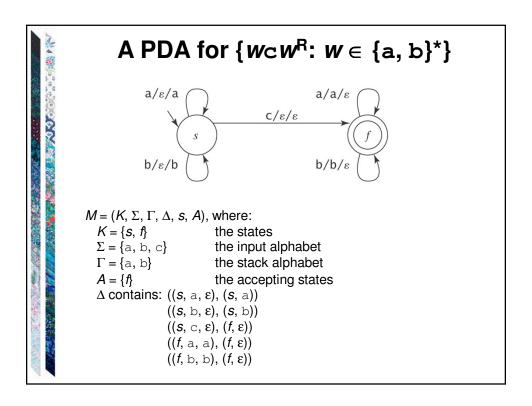
- $C = (s, w, \varepsilon) \mid -M^* (q, w', \alpha),$
- C is not an accepting computation, and
- M has no moves that it can make from (q, ε, α) .

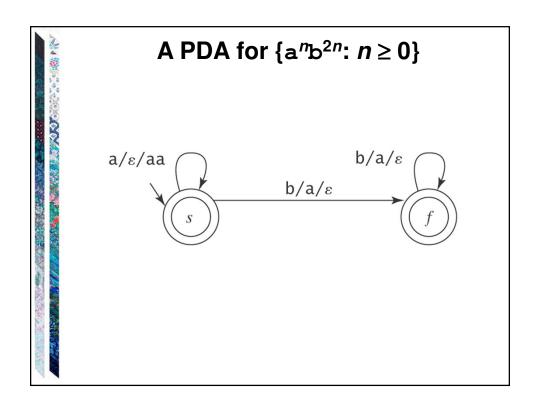
M rejects a string w iff all of its computations reject.

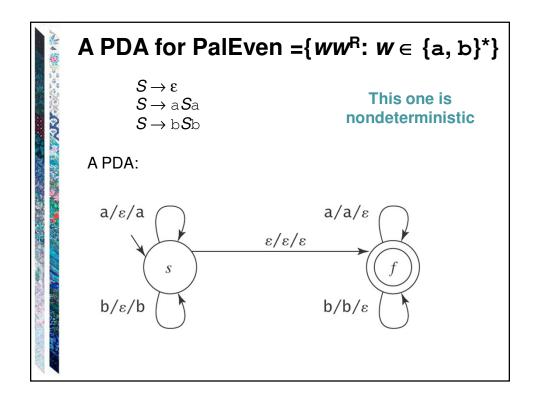
Note that it is possible that, on input w, M neither accepts nor rejects.

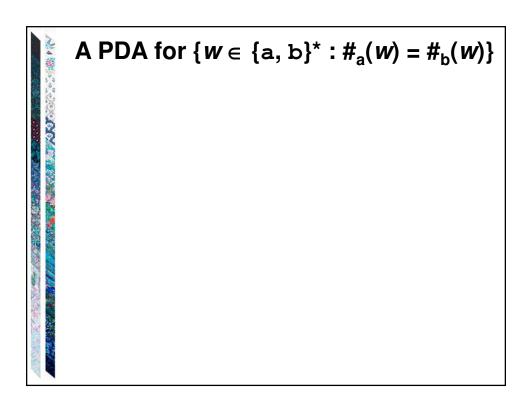








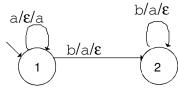




More on Nondeterminism Accepting Mismatched lengths

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

Start with the case where n = m:

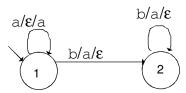


Need to fix it so that

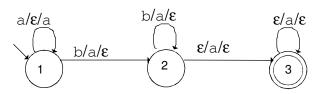
- If stack and input are empty, halt and reject.
- If input is empty but stack is not (m > n) (accept):
- If stack is empty but input is not (m < n) (accept):

More on Nondeterminism Accepting Mismatches

 $L=\left\{ \mathbf{a}^{m}\mathbf{b}^{n}:m\neq n;\,m,\,n>0\right\}$

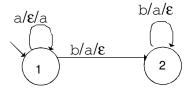


• If input is empty but stack is not (m < n) (accept):

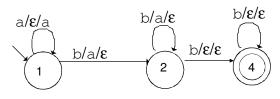


More on Nondeterminism Accepting Mismatches

 $L=\left\{ \mathbf{a}^{m}\mathbf{b}^{n}:m\neq n;\,m,\,n>0\right\}$

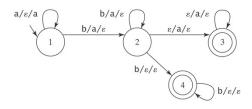


• If stack is empty but input is not (m > n) (accept):



Putting It Together

 $L=\left\{ \mathbf{a}^{m}\mathbf{b}^{n}:\,m\neq n;\;m,\,n>0\right\}$



- Jumping to the input-clearing state 4: Need to detect bottom of stack.
- Jumping to the stack-clearing state 3: Need to detect end of input.

The Power of Nondeterminism

Consider $A^nB^nC^n = \{a^nb^nc^n: n \ge 0\}.$

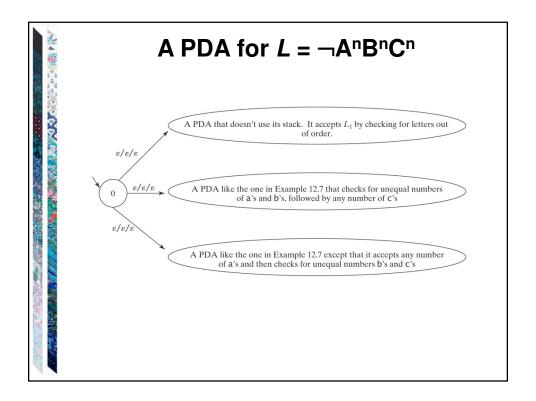
PDA for it?

The Power of Nondeterminism

Consider $A^nB^nC^n = \{a^nb^nc^n: n \ge 0\}.$

Now consider $L = \neg A^nB^nC^n$. L is the union of two languages:

- 1. $\{w \in \{a, b, c\}^* : \text{the letters are out of order}\}$, and
- 2. $\{a^i b^j c^k : i, j, k \ge 0 \text{ and } (i \ne j \text{ or } j \ne k)\}$ (in other words, unequal numbers of a's, b's, and c's).



Are the Context-Free Languages Closed Under Complement?

 $\neg A^n B^n C^n$ is context free.

If the CF languages were closed under complement, then

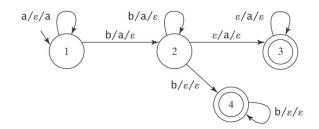
 $\neg \neg A^n B^n C^n = A^n B^n C^n$

would also be context-free.

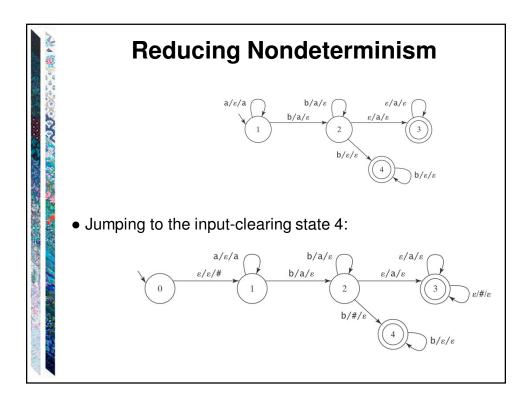
But we will prove that it is not.

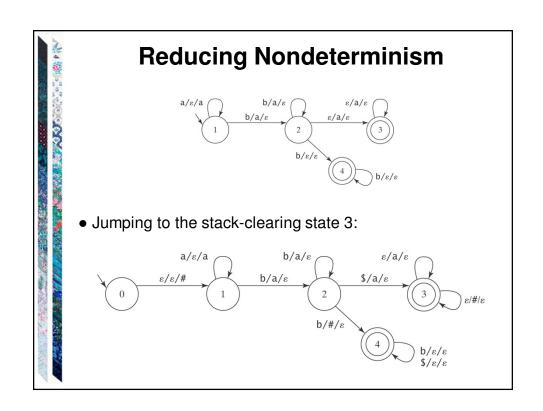
```
L = \{a^m b^m c^p : n, m, p \ge 0 \text{ and } n \ne m \text{ or } m \ne p\}
 S \rightarrow NC
                           /* n \neq m, then arbitrary c's
 S \rightarrow QP
                           /* arbitrary a's, then p \neq m
 N \rightarrow A
                           /* more a's than b's
 N \rightarrow B
                           /* more b's than a's
 A \rightarrow a
 A \rightarrow aA
 A \rightarrow aAb
 B \rightarrow b
 B \rightarrow Bb
 B \rightarrow aBb
 C \rightarrow \varepsilon \mid cC
                           /* add any number of c's
 P \rightarrow B'
                           /* more b's than c's
 P \rightarrow C'
                           /* more c's than b's
 B' \rightarrow b
 B' \rightarrow bB'
 B' \rightarrow bB'c
 C' \rightarrow c \mid C'c
 C' \rightarrow C'
 C' \rightarrow bC'c
                           /* prefix with any number of a's
 Q \rightarrow \varepsilon \mid aQ
```

Reducing Nondeterminism

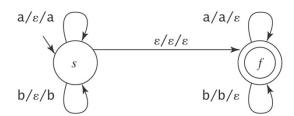


- Jumping to the input-clearing state 4:
 Need to detect bottom of stack, so push # onto the stack before we start.
- Jumping to the stack-clearing state 3:
 Need to detect end of input. Add to L a termination character (e.g., \$)





A PDA for $\{ww^{R}: w \in \{a, b\}^{*}\}$:



What about a PDA to accept $\{ww : w \in \{a, b\}^*\}$?

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.

Proof (by construction):

The idea: Let the stack do the work.

Two approaches:

- Top down
- · Bottom up

Top Down The idea: Let the stack keep track of expectations. Example: Arithmetic expressions $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow id$ (1) $(q, \varepsilon, E), (q, E+T)$ (7) $(q, id, id), (q, \varepsilon)$ (2) $(q, \varepsilon, E), (q, T)$ (8) $(q, (, (), (q, \varepsilon))$ (3) $(q, \varepsilon, T), (q, T^*F)$ (9) $(q,),), (q, \varepsilon)$ (4) $(q, \varepsilon, T), (q, F)$ (10) $(q, +, +), (q, \varepsilon)$ (5) $(q, \varepsilon, F), (q, (E))$ (11) $(q, *, *), (q, \varepsilon)$ (6) $(q, \varepsilon, F), (q, id)$

A Top-Down Parser

The outline of *M* is:

 $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\}), \text{ where } \Delta \text{ contains:}$

- The start-up transition $((p, \varepsilon, \varepsilon), (q, S))$.
- For each rule $X \to s_1 s_2 ... s_n$ in R, the transition: $((q, \varepsilon, X), (q, s_1 s_2 ... s_n))$.
- For each character $c \in \Sigma$, the transition: $((q, c, c), (q, \varepsilon))$.

Example of the Construction $L = \{a^nb^*a^n\}$ 0 (p, ε , ε), (q, S) (1) $S \rightarrow \epsilon$ 1 (q, ε , S), (q, ε) (2) $S \rightarrow B$ $2 (q, \varepsilon, S), (q, B)$ (3) S \rightarrow aSa $3 (q, \varepsilon, S), (q, aSa)$ (4) $B \rightarrow \epsilon$ 4 (q, ε , B), (q, ε) (5) $B \rightarrow bB$ 5 (q, ε , B), (q, bB) 6 (q, a, a), (q, ϵ) 7 (q, b, b), (q, ϵ) input = a a b b a a state unread input stack a a b b a a aabbaa a**S**a aabbaa abbaa abbaa a**S**aa Saa Baa b**B**aa Baa b**B**aa Baa aa

```
Another Example

L = \{a^m b^m c^p d^q : m + n = p + q\}
(1) S \rightarrow a S d
(2) S \rightarrow T
(3) S \rightarrow U
(4) T \rightarrow a T c
(5) T \rightarrow V
(6) U \rightarrow b U d
(7) U \rightarrow V
(8) V \rightarrow b V c
(9) V \rightarrow \varepsilon
input = a \ a \ b \ c \ d \ d
```

Another Example $L = \{a^n b^m c^p d^q : m + n = p + q\}$ $\begin{array}{ll} 0 & (p,\,\epsilon,\,\epsilon),\,(q,\,S) \\ 1 & (q,\,\epsilon,\,S),\,(q,\,\mathrm{a}\,S\mathrm{d}) \end{array}$ (1) $S \rightarrow aSd$ (2) $S \rightarrow T$ 2 $(q, \epsilon, S), (q, T)$ (3) $S \rightarrow U$ (4) $T \rightarrow aTc$ 3 $(q, \varepsilon, S), (q, U)$ 4 $(q, \varepsilon, T), (q, aTc)$ 5 (q, ε, T), (q, V) 6 (q, ε, U), (q, bUd) (5) $T \rightarrow V$ (6) $U \rightarrow bUd$ (7) $U \rightarrow V$ 7 $(q, \varepsilon, U), (q, V)$ 8 $(q, \varepsilon, V), (q, bVc)$ (8) $V \rightarrow bVc$ (9) $V \rightarrow \varepsilon$ 9 $(q, \varepsilon, V), (q, \varepsilon)$ 10 (q, a, a), (q, ϵ) 11 $(q, b, b), (q, \varepsilon)$ input = a a b c d d 12 (q, c, c), (q, ε) 13 $(q, d, d), (q, \varepsilon)$ unread input trans state stack

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial languages.

Example: $A^nB^n = \{a^nb^n : n \ge 0\}$

A grammar for AⁿBⁿ is:

A PDA M for AnBn is:

(0) $((p, \varepsilon, \varepsilon), (q, S))$

[1] $S \rightarrow aSb$

(1) $((q, \varepsilon, S), (q, aSb))$

[2] $S \rightarrow \varepsilon$

(2) $((q, \varepsilon, S), (q, \varepsilon))$ (3) $((q, a, a), (q, \varepsilon))$

(4) $((q, b, b), (q, \epsilon))$

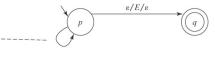
But transitions 1 and 2 make M nondeterministic.

A directly constructed machine for AⁿBⁿ:

Bottom-Up

The idea: Let the stack keep track of what has been found.

- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- $(5) F \rightarrow (E)$
- (6) $F \rightarrow id$



Reduce Transitions:

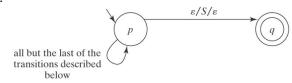
- (1) $(p, \varepsilon, T + E), (p, E)$
- (2) $(p, \varepsilon, T), (p, E)$
- (3) $(p, \varepsilon, F * T), (p, T)$
- (4) $(p, \varepsilon, F), (p, T)$
- (5) $(p, \varepsilon,)E(), (p, F)$
- (6) $(p, \varepsilon, id), (p, F)$

Shift Transitions

- (7) $(p, id, \varepsilon), (p, id)$
- (8) $(p, (, \varepsilon), (p, ()$
- (9) $(p,), \varepsilon), (p,))$
- (10) $(p, +, \varepsilon), (p, +)$
- (11) $(p, *, \varepsilon), (p, *)$

A Bottom-Up Parser

The outline of *M* is:



 $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\}), \text{ where } \Delta \text{ contains:}$

- The shift transitions: $((p, c, \varepsilon), (p, c))$, for each $c \in \Sigma$.
- The reduce transitions: $((p, \varepsilon, (s_1s_2...s_n.)^R), (p, X))$, for each rule $X \to s_1s_2...s_n$. in G.
- The finish up transition: $((p, \varepsilon, S), (q, \varepsilon))$.