P>

e e

Prs

27

B

s

N A AR AR

DRV e T e

"N R IO OIR S e T

MA/CSSE 474
* Theory of Computation

%

M

Exam Friday; you may bring
two sheets of paper.
Material: through HWO.

PDAs and CFGs

Recap: PDA Definition

M= (K, %, T, A, s, A), where:
Kis a finite set of states
Y isthe input alphabet |3 and 1 are not
I' is the stack alphabet | necessarily disjoint
s € Kis the initial state
A c Kiis the set of accepting states, and
A is the transition relation. It is a finite subset of

(K x (Eufe) x T x (K x I

state inputore stringof state string of

symbols symbols
to pop to push
from top on top
of stack of stack

1/17/2012

1/17/2012

P

Recap: Configurations and Yields

A configuration of Mis an element of Kx £* x I'™.
An initial configuration of Mis (s, w, €), where w is
the input string.

Let c be any element of X U {g},

Let v,, v, and y be any elements of I'*, and
Let wbe any element of X*.

Then:

(91, W, V1Y) I-m (Qos W, VoY) i (G4, € 14), (Qs Y2)) € A

Let |-\, be the reflexive, transitive closure of |-,

C, yields configuration G, iff C; |-,,* C,

s SRR R tatat
ARSI N R A AR R TR e

P

Yields

Let c be any element of £ U {€},
Let vy, v, and y be any elements of I'*, and
Let wbe any element of X*.

Then:
(91, W, V1Y) I-m (Gas W, VoY) i (G4, € 14), (Q) Y2)) € A

Let |-,,* be the reflexive, transitive closure of |-,

C, yields configuration G, iff C, |-\,* C,

s SRR R tatat
ARSI TR R T R SRR TR e e

:Recap: Computations and Acceptance

A computation by Mis a finite sequence of configurations C,,
Cy, ..., C,forsome n> 0 such that:
e C, is an initial configuration,
e C,is of the form (q, €, y), for some state g € K, and
some string yin I'*, and
®Colm Cilm Col-py - I-m Cp

A computation C of Mis an accepting computation iff:
C=(s,w,¢€) |- (g ¢¢),and ge A
M accepts a string w iff at least one of its computations accepts.

Other paths may:
e Read all the input and halt in a nonaccepting state,
¢ Read all the input and halt in an accepting state with the stack not
empty,
e Loop forever and never finish reading the input, or
e Reach a dead end where no more input can be read.

The language accepted by M, denoted L(M), is the set of all strings
accepted bv M

Rejecting
A computation C of M is a rejecting computation iff:
e C=(s,w,¢) |-y (q W)),
e Cis not an accepting computation, and
e M has no moves that it can make from (q, €, o).
M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

1/17/2012

1/17/2012

A PDA for Bal

(/e

& M= (K Z,T,A s A), where:

K={s} the states
={()} the input alphabet
r'={(} the stack alphabet
A={s}

A contains:

**Important: This does not mean that the stack is empty

A PDA for A"B" = {a™": n > 0}

a/e/a b/a/s
b/a/e .

e ©

4=

A PDA for {wewR: w e {a, b}*}

a/e/a a/a/e
C/S/E ’
b/e/b b/b/e .

M= (K, %, T, A, s, A), where:

K={s, f#} the states
Y ={a, b, c} the input alphabet
I'={a, b} the stack alphabet
A={f the accepting states
A contains: ((s, a, €), (s, a))

((s, b, &), (s, b))

((s, c, &), (£ €))

((f, a, a), (1,)

((£, b, b), (1, €))

A PDA for {a"b?": n > 0}

a/s/aa b/a/e

1/17/2012

A PDA for PalEven ={ww”: w e {a, b}*}

S—e i]
S— aSa This one is
S > bSh nondeterministic
A PDA:
a/e/a a/a/e '
s/s/s

b/e/b b/b/s '

A PDA for {we {a, b}* : #,(w) = #,(w)}

P

1/17/2012

More on Nondeterminism
Accepting Mismatched lengths

L={a™": m+n;m, n> 0}

Start with the case where n= m:
blale

[

alela

blale

Need to fix it so that

e If stack and input are empty, halt and reject.
e If input is empty but stack is not (m > n) (accept):

e If stack is empty but input is not (m < n) (accept):

More on Nondeterminism
Accepting Mismatches

L={a™":m=#n;m,n> 0}

a/E/a b/a/E

\g e ﬂ:

e If input is empty but stack is not (m < n) (accept):

alela b/ale elale

@ ol 6 ot @)

1/17/2012

N fl;";'- T R R arie
ARSI N R A AR R TR e

More on Nondeterminism
Accepting Mismatches

L={a™": m+n;m, n> 0}

blale

[

alela

blale

e If stack is empty but input is not (m > n) (accept):

a/i-:/a b/a/e b/E/E

6 blae 6 ol 8)

3
@
B

d

)
A
oay
i
&

Putting It Together

L={a™":m=n; m, n>0}

a/e/a b/a/e e/a/e
b/a/e efafe
T
e/e

e Jumping to the input-clearing state 4:
Need to detect bottom of stack.

e Jumping to the stack-clearing state 3:
Need to detect end of input.

1/17/2012

1/17/2012

P

The Power of Nondeterminism

Consider A"B"C" = {a™"c": n > 0}.

PDA for it?

B —
ARSI N R A AR R TR e

P

The Power of Nondeterminism

Consider A"B"C" = {a™"c": n > 0}.

Now consider L = = A"B"C". L is the union of two
languages:

1. {we {a, b, c}* : the letters are out of order}, and

2. {abick: i, j, k>0 and (i# jor j# K)} (in other words,
unequal numbers of a’s, b’s, and c’s).

e e T T
e T 0 & SR

1/17/2012

A PDA for L = -A"B"C"

A PDA that doesn’t use its stack. It accepts L, by checking for letters out
of order.

A PDA like the one in Example 12.7 that checks for unequal numbers
of a’s and b’s, followed by any number of C’s

A PDA like the one in Example 12.7 except that it accepts any number
of a’s and then checks for unequal numbers b’s and ¢’s

Are the Context-Free Languages
Closed Under Complement?

—A"B"C" is context free.

If the CF languages were closed under complement,
then

——A"B"C" = A"BCn

would also be context-free.

But we will prove that it is not.

10

1/17/2012

L ={a"™™cP: n, m, p>0and n# mor m= p}

AT

S—> NC /* n# m, then arbitrary c's
S—- QP /* arbitrary a's, then p#= m
N— A /*more a's than b's

N— B /*more b's than a's
A—>a

A—> aA

A— aAb

B—b

B — Bb

B — aBb

C—oe|cC /* add any number of c's
P— B /*more b's than c's
P—C' /*more c's than b's
B'—>b

B'— bB’

B'— bB'c

C'—>c|Ctc

C'—-Cc

C'—-DbCc

Q—¢elaQ /* prefix with any number of a's

P T RS S SR

X
)

P

Reducing Nondeterminism

a/e/a b/a/sQ e/a/e
b/a/e e/a/e
1 T 0

b/e/e
. b/e/e

e Jumping to the input-clearing state 4:
Need to detect bottom of stack, so push # onto the
stack before we start.

e Jumping to the stack-clearing state 3:
Need to detect end of input. Add to L a termination
character (e.g., $)

e)) e AP
PRIRI 5 e

e RPN .&m

11

Reducing Nondeterminism

ajefa b/a/e &e/aje
b/a/e e/a/e
G0

P RS

BB TR 7w

e Jumping to the input-clearing state 4:

a/e/a b/a/e e/a/e
e/e/# Q h/a/e Q s/a/e
\@ U 2 @ el#tle

b/#/s
' b/e/s

i

Reducing Nondeterminism

a/e/a b/a/e efa/e
b/a/e e/a/e
SO ©

e Jumping to the stack-clearing state 3:

a/e/a b/a/e efa/e
e/e/# ‘_Q b/a/e ‘_Q $/a/e o

b/#/e
. b/e/e
$/e/e

1/17/2012

12

More on PDAs
A PDA for {wu? : we {a, b}*}:
a/e/a a/a/e

b/e/b b/b/e

. I_‘-‘..—;.l :\‘-‘:_;-.v“'" SRR SPEED
AR TN IR G TERRY

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is
exactly the class of context-free languages.

Recall: context-free languages are languages that
can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

1/17/2012

13

1/17/2012

Going One Way

Lemma: Each context-free language is accepted by
some PDA.

Proof (by construction):

B TERRI757 e

The idea: Let the stack do the work.

Two approaches:

+ Top down

N - AR £33, 2
aieal? -, 7 e Ul B P- & h
O F o F B PSR

» Bottom up

P

Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

PRI e s

E-E+T
E->T
) T—Tx*F e/s/E
T—>F 5
8 Fo(H C é@
a8 Foid T
5 (1) (q.& E), (g E+T) (7) (q, id, id), (g,)
Y8 @ (@eH.(@D ®) (q.(()(ge
| (3 (g.&7).(q TF) 9 (g).)) (qe

(4) (g.&7),(q F) (10) (g, +, +), (g, &)

(5) (q.& A, (q (E)) (11) (a, %, %), (g, &)

(6) (q.¢ F), (g, id)

14

1/17/2012

4=
A Top-Down Parser
 The outline of Mis:
" all but the first of the transitions described below
| o ¢

M=({p, g, L, V, A, p,{q}), where A contains:
e The start-up transition ((p, €, €), (g, S)).

e For each rule X — s;8,...5,. in R, the transition:
(9. & X), (, 51S...5))).

e For each character c € X, the transition:
((g, ¢, 0, (q, £)).

P

ﬂ,:,]
Example of the Construction
L ={a"v*a"}
;_& O (p! 8, s)! (q! S)
_ (1)8_>£ * 1(q!£ss)!(q!£)
o (2)S—B 2(9,¢,5),(a, B)
& (3) S — aSa 3(a, &), (9, aSa)
B (4Boe 4(q,¢ B), (g,)
B 6(a, 2, 2), (¢
6 input=a a b b a a 7 (g, b, b), (q, €)
B trans state unread input stack
iy P aabbaa €
] 0 q aabbaa S
G 3 q aabbaa aSa
B 6 q abbaa Sa
3 q abbaa aSaa
6 q bbaa Saa
‘ 2 q bbaa Baa
f 5 q bbaa bBaa
7 q baa Baa
5 q b aa bBaa
7 q aa Baa
4 q a a aa
6 q a a
6 q € €

15

1/17/2012

Another Example

{aoMcPd9: m+ n=p+ q}

L=

input=a a b ¢ d d

Another Example

T

=p+

{a™moMcPdd: m+ n

L=

= T T D

] P I
BRI sSaSo T
ST SIS IT TSI
TN HTRFRSSSS©a 0T
o TS TT TS FS.g 0T
RIS AR A A

O~ AN ™M
O~ AN MOTLOLOMNODODD ™ v v

aabcdd

)
)
)
)
)
)
)
)
)
input

stack

state unread input

trans

16

1/17/2012

=

P

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic,
even when they needn't be. This happens even with trivial
languages.

Example: A"B" = {a"b": n > 0}

A grammar for A"B" is: A PDA Mfor A"B" is:
0) ((p. & 8), (g, 9))

[1]1S— aSo (1) (@& S), (g, aSb))
[2]1S—¢ (2 ((g.& S5), (g 9)
Q) (g, 2, a), (g, €)
(4) (g, b,), (g, &)

But transitions 1 and 2 make M nondeterministic.

A directly constructed machine for A"B":

5 - ;_"_"";'. T R R SPEED
ARSI N R A AR R TR e

Bottom-Up
‘_‘l The idea: Let the stack keep track of what has been found.
.‘ NVE—SE+T
5 3 RE->T
‘i‘g B T—>TxF -
HE @T-F p—
i e F>m®
(6) F— id -
Reduce Transitions: Shift Transitions
L+ (1) (e, T+E),(p, E) (7) (p.id, €), (p, id)
% (2) (,O € T)! (p! E) (8) (p! (! E)! (p! ()
; (3) (pe FxT), (0T 9 (o)), (p)
f (4) (p € F)! (p! T) (10) (p! +, E)! (p! +)
(5) (b, &)E(), (p, F) (11) (p, *, €), (p, *)
(6) (p. & id), (p, F)

17

A Bottom-Up Parser

The outline of Mis:
e/S/e
:

M=({p, g}, X, V, A, p, {q}), where A contains:

all but the last of the
transitions described
below

e The shift transitions: ((p, ¢, €), (p, ¢)), foreach ce X.

e The reduce transitions: ((p, €, (5S...5,.)R), (p, X)), for each rule
X = §155...5,.in G.

e The finish up transition: ((p, €, S), (g, €)).

1/17/2012

18

