
1/22/2012

1

PDAs and CFGs

MA/CSSE 474
Theory of Computation

Exam Friday; you may bring

two sheets of paper.

Material: through HW9.

Don't forget the faculty candidate talk today:
4:20 O-201

Recap: PDA Definition

M = (K, Σ, Γ, ∆, s, A), where:
K is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
s ∈ K is the initial state
A ⊆ K is the set of accepting states, and
∆ is the transition relation. It is a finite subset of

(K × (Σ ∪ {ε}) × Γ*) × (K × Γ*)

state input or ε string of state string of
symbols symbols
to pop to push
from top on top
of stack of stack

ΣΣΣΣ and ΓΓΓΓ are not
necessarily disjoint

1/22/2012

2

Recap: Configurations and Yields

A configuration of M is an element of K × Σ* × Γ*.
An initial configuration of M is (s, w, ε), where w is

the input string.

Let c be any element of Σ ∪ {ε},
Let γ1, γ2 and γ be any elements of Γ*, and
Let w be any element of Σ*.
Then:

(q1, cw, γ1γ) |-M (q2, w, γ2γ) iff ((q1, c, γ1), (q2, γ2)) ∈ ∆.

Let |-M* be the reflexive, transitive closure of |-M.

C1 yields configuration C2 iff C1 |-M* C2

Yields

Let c be any element of Σ ∪ {ε},
Let γ1, γ2 and γ be any elements of Γ*, and
Let w be any element of Σ*.

Then:
(q1, cw, γ1γ) |-M (q2, w, γ2γ) iff ((q1, c, γ1), (q2, γ2)) ∈ ∆.

Let |-M* be the reflexive, transitive closure of |-M.

C1 yields configuration C2 iff C1 |-M* C2

1/22/2012

3

Recap: Computations and Acceptance
A computation by M is a finite sequence of configurations C0,

C1, …, Cn for some n ≥ 0 such that:
● C0 is an initial configuration,
● Cn is of the form (q, ε, γ), for some state q ∈ KM and
some string γ in Γ*, and
● C0 |-M C1 |-M C2 |-M … |-M Cn.

A computation C of M is an accepting computation iff:
C = (s, w, ε) |-M* (q, ε, ε), and q ∈ A.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
● Read all the input and halt in a nonaccepting state,
● Read all the input and halt in an accepting state with the stack not

empty,
● Loop forever and never finish reading the input, or
● Reach a dead end where no more input can be read.

The language accepted by M, denoted L(M), is the set of all strings
accepted by M.

Rejecting

A computation C of M is a rejecting computation iff:

●C = (s, w, ε) |-M* (q, w′, α),
●C is not an accepting computation, and
●M has no moves that it can make from (q, ε, α).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

1/22/2012

4

A PDA for Bal

M = (K, Σ, Γ, ∆, s, A), where:
K = {s} the states
Σ = {(,)} the input alphabet
Γ = {(} the stack alphabet
A = {s}
∆ contains:

((s, (, ε), (s, ()) **
((s,), (), (s, ε))

**Important: This does not mean that the stack is empty

A PDA for AnBn = {anbn: n ≥≥≥≥ 0}

1/22/2012

5

M = (K, Σ, Γ, ∆, s, A), where:
K = {s, f} the states
Σ = {a, b, c} the input alphabet
Γ = {a, b} the stack alphabet

A = {f} the accepting states
∆ contains: ((s, a, ε), (s, a))

((s, b, ε), (s, b))
((s, c, ε), (f, ε))
((f, a, a), (f, ε))
((f, b, b), (f, ε))

A PDA for {wcwR: w ∈∈∈∈ {a, b}*}

A PDA for {anb2n: n ≥≥≥≥ 0}

1/22/2012

6

A PDA for PalEven ={wwR: w ∈∈∈∈ {a, b}*}

S → ε
S → aSa

S → bSb

A PDA:

This one is
nondeterministic

A PDA for {w ∈∈∈∈ {a, b}* : #a(w) = #b(w)}

1/22/2012

7

A PDA for {w ∈∈∈∈ {a, b}* : #a(w) = #b(w)}

More on Nondeterminism
Accepting Mismatched lengths

L = {ambn : m ≠ n; m, n > 0}

Start with the case where n = m:

a/ε/a

b/a/ε

b/a/ε

● If stack and input are empty, halt and reject.

● If input is empty but stack is not (m > n) (accept):

● If stack is empty but input is not (m < n) (accept):

1 2

Need to fix it so that

1/22/2012

8

More on Nondeterminism
Accepting Mismatches

L = {ambn : m ≠ n; m, n > 0}

a/ε/a

b/a/ε

b/a/ε

● If input is empty but stack is not (m < n) (accept):

a/ε/a

b/a/ε

b/a/ε

ε/a/ε

ε/a/ε

1 2

21 3

More on Nondeterminism
Accepting Mismatches

L = {ambn : m ≠ n; m, n > 0}

a/ε/a

b/a/ε

b/a/ε

● If stack is empty but input is not (m > n) (accept):

a/ε/a

b/a/ε

b/a/ε

1 2

21 4

b/ε/ε

b/ε/ε

1/22/2012

9

Putting It Together
L = {ambn : m ≠ n; m, n > 0}

● Jumping to the input-clearing state 4:
Need to detect bottom of stack.

● Jumping to the stack-clearing state 3:
Need to detect end of input.

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n ≥ 0}.

PDA for it?

1/22/2012

10

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n ≥ 0}.

Now consider L = ¬ AnBnCn. L is the union of two
languages:

1. {w ∈ {a, b, c}* : the letters are out of order}, and

2. {aibjck: i, j, k ≥ 0 and (i ≠ j or j ≠ k)} (in other words,
unequal numbers of a’s, b’s, and c’s).

A PDA for L = ¬¬¬¬AnBnCn

1/22/2012

11

Are the Context-Free Languages
Closed Under Complement?

¬AnBnCn is context free.

If the CF languages were closed under complement,
then

¬¬AnBnCn = AnBnCn

would also be context-free.

But we will prove that it is not.

L = {anbmcp: n, m, p ≥≥≥≥ 0 and n ≠≠≠≠ m or m ≠≠≠≠ p}

S → NC /* n ≠ m, then arbitrary c's
S → QP /* arbitrary a's, then p ≠ m
N → A /* more a's than b's
N → B /* more b's than a's
A → a

A → aA
A → aAb
B → b

B → Bb
B → aBb
C → ε | cC /* add any number of c's
P → B' /* more b's than c's
P → C' /* more c's than b's
B' → b

B' → bB'
B' → bB'c
C' → c | C'c
C' → C'c
C' → bC'c
Q → ε | aQ /* prefix with any number of a's

1/22/2012

12

Reducing Nondeterminism

● Jumping to the input-clearing state 4:
Need to detect bottom of stack, so push # onto the
stack before we start.

● Jumping to the stack-clearing state 3:
Need to detect end of input. Add to L a termination
character (e.g., $)

Reducing Nondeterminism

● Jumping to the input-clearing state 4:

1/22/2012

13

Reducing Nondeterminism

● Jumping to the stack-clearing state 3:

More on PDAs

A PDA for {wwR : w ∈ {a, b}*}:

What about a PDA to accept {ww : w ∈ {a, b}*}?

1/22/2012

14

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is
exactly the class of context-free languages.

Recall: context-free languages are languages that
can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by
some PDA.

Proof (by construction):

The idea: Let the stack do the work.

Two approaches:

• Top down

• Bottom up

1/22/2012

15

Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

(1) (q, ε, E), (q, E+T) (7) (q, id, id), (q, ε)
(2) (q, ε, E), (q, T) (8) (q, (, (), (q, ε)
(3) (q, ε, T), (q, T*F) (9) (q,),)), (q, ε)
(4) (q, ε, T), (q, F) (10) (q, +, +), (q, ε)
(5) (q, ε, F), (q, (E)) (11) (q, ∗, ∗), (q, ε)
(6) (q, ε, F), (q, id)

A Top-Down Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:
● The start-up transition ((p, ε, ε), (q, S)).

● For each rule X → s1s2…sn. in R, the transition:
((q, ε, X), (q, s1s2…sn)).

● For each character c ∈ Σ, the transition:
((q, c, c), (q, ε)).

1/22/2012

16

Example of the Construction
L = {anb*an}

0 (p, ε, ε), (q, S)
(1) S → ε * 1 (q, ε, S), (q, ε)
(2) S → B 2 (q, ε, S), (q, B)
(3) S → aSa 3 (q, ε, S), (q, aSa)

(4) B → ε 4 (q, ε, B), (q, ε)
(5) B → bB 5 (q, ε, B), (q, bB)

6 (q, a, a), (q, ε)
input = a a b b a a 7 (q, b, b), (q, ε)
trans state unread input stack

p a a b b a a ε

0 q a a b b a a S
3 q a a b b a a aSa
6 q a b b a a Sa
3 q a b b a a aSaa
6 q b b a a Saa
2 q b b a a Baa
5 q b b a a bBaa
7 q b a a Baa
5 q b a a bBaa
7 q a a Baa
4 q a a aa

6 q a a

6 q ε ε

Another Example

L = {anbmcpdq : m + n = p + q}

(1)S → aSd

(2)S → T
(3)S → U
(4)T → aTc

(5)T → V
(6)U → bUd

(7)U → V
(8)V → bVc

(9)V → ε

input = a a b c d d

1/22/2012

17

Another Example

L = {anbmcpdq : m + n = p + q}

0 (p, ε, ε), (q, S)
(1) S → aSd 1 (q, ε, S), (q, aSd)

(2) S → T 2 (q, ε, S), (q, T)
(3) S → U 3 (q, ε, S), (q, U)
(4) T → aTc 4 (q, ε, T), (q, aTc)

(5) T → V 5 (q, ε, T), (q, V)
(6) U → bUd 6 (q, ε, U), (q, bUd)

(7) U → V 7 (q, ε, U), (q, V)
(8) V → bVc 8 (q, ε, V), (q, bVc)

(9) V → ε 9 (q, ε, V), (q, ε)
10 (q, a, a), (q, ε)
11 (q, b, b), (q, ε)

input = a a b c d d 12 (q, c, c), (q, ε)
13 (q, d, d), (q, ε)

trans state unread input stack

The Other Way to Build a PDA - Directly

L = {anbmcpdq : m + n = p + q}

(1) S → aSd (6) U → bUd

(2) S → T (7) U → V

(3) S → U (8) V → bVc

(4) T → aTc (9) V → ε

(5) T → V

input = a a b c d d

1/22/2012

18

The Other Way to Build a PDA - Directly
L = {anbmcpdq : m + n = p + q}

(1) S → aSd (6) U → bUd

(2) S → T (7) U → V
(3) S → U (8) V → bVc
(4) T → aTc (9) V → ε

(5) T → V

input = a a b c d d

1 2 3 4

a/ε/a b/ε/a c/a/ε d/a/ε

b/ε/a c/a/ε d/a/ε

c/a/ε d/a/ε

d/a/ε

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic,
even when they needn't be. This happens even with trivial
languages.

Example: AnBn = {anbn: n ≥ 0}

A grammar for AnBn is: A PDA M for AnBn is:

(0) ((p, ε, ε), (q, S))
[1] S → aSb (1) ((q, ε, S), (q, aSb))

[2] S → ε (2) ((q, ε, S), (q, ε))
(3) ((q, a, a), (q, ε))
(4) ((q, b, b), (q, ε))

But transitions 1 and 2 make M nondeterministic.

A directly constructed machine for AnBn:

1/22/2012

19

Bottom-Up

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

Reduce Transitions:
(1) (p, ε, T + E), (p, E)
(2) (p, ε, T), (p, E)
(3) (p, ε, F ∗ T), (p, T)
(4) (p, ε, F), (p, T)
(5) (p, ε,)E(), (p, F)
(6) (p, ε, id), (p, F)

Shift Transitions
(7) (p, id, ε), (p, id)
(8) (p, (, ε), (p, ()
(9) (p,), ε), (p,))
(10) (p, +, ε), (p, +)
(11) (p, ∗, ε), (p, ∗)

The idea: Let the stack keep track of what has been found.

A Bottom-Up Parser

The outline of M is:

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

● The shift transitions: ((p, c, ε), (p, c)), for each c ∈ Σ.

● The reduce transitions: ((p, ε, (s1s2…sn.)
R), (p, X)), for each rule

X → s1s2…sn. in G.

● The finish up transition: ((p, ε, S), (q, ε)).

