

Are the Context-Free Languages Closed Under Complement?

 $\neg A^n B^n C^n$ is context free.

If the CF languages were closed under complement, then

 $\neg \neg A^{n}B^{n}C^{n} = A^{n}B^{n}C^{n}$

would also be context-free.

But we will prove that it is not.

No.	$L = \{a^m b^m$	c^p : $n, m, p \ge 0$ and $n \ne m$ or $m \ne p$
2000	$S \rightarrow NC$	/* $n \neq m$, then arbitrary c's
	$S \rightarrow QP$ $N \rightarrow \Delta$	/ arbitrary a S, then $p \neq m$ /* more a's than b's
	$N \rightarrow R$ $N \rightarrow B$	/* more b's than a's
	$A \rightarrow a$	
	$A \rightarrow aA$	
	$A \rightarrow aAb$	
	$B \rightarrow D$ $B \rightarrow B$ b	
	$B \rightarrow a B b$	
	$C \rightarrow \varepsilon \mid cC$	/* add any number of c's
	$P \rightarrow B'$	/* more b's than c's
	$P \rightarrow C$ $B' \rightarrow b$	/" more c's than b's
	$B' \rightarrow bB'$	
	$B' ightarrow { m b}B'{ m c}$	
S 2	$C' \rightarrow c \mid C'c$	
	$C' \rightarrow C'_{C}$ $C' \rightarrow bC'_{C}$	
	$Q \rightarrow \varepsilon \mid aQ$	/* prefix with any number of a's

