

Recap: PDA Definition

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
K is a finite set of states
Σ is the input alphabet
Σ and Γ are not
Γ is the stack alphabet necessarily disjoint
$s \in K$ is the initial state
$A \subseteq K$ is the set of accepting states, and
Δ is the transition relation. It is a finite subset of

(K	$(\Sigma \cup\{\varepsilon\}) \times$	$\left.\Gamma^{*}\right) \times$	$1 \begin{aligned} & K \times\end{aligned}$	$\left.\Gamma^{*}\right)$
state	input or ε	string of	state	string of
		symbols		symbols
		to pop		to push
		from top		on top
		of stack		of stack

Recap: Configurations and Yields

A configuration of M is an element of $K \times \Sigma^{*} \times \Gamma^{*}$. An initial configuration of M is (s, w, ε), where w is the input string.

Let c be any element of $\Sigma \cup\{\varepsilon\}$,
Let γ_{1}, γ_{2} and γ be any elements of Γ^{*}, and Let w be any element of Σ^{\star}.
Then:
$\left.\left(q_{1}, c w, \gamma_{1} \gamma\right)\right|_{M}\left(q_{2}, w, \gamma_{2} \gamma\right)$ iff $\left(\left(q_{1}, c, \gamma_{1}\right),\left(q_{2}, \gamma_{2}\right)\right) \in \Delta$.
Let $\mid-{ }_{M}^{*}$ be the reflexive, transitive closure of $\left.\right|_{M}$.
C_{1} yields configuration C_{2} iff $C_{1} \mid-{ }_{M}^{*} C_{2}$

Yields

Let c be any element of $\Sigma \cup\{\varepsilon\}$,
. Let γ_{1}, γ_{2} and γ be any elements of Γ^{*}, and Let w be any element of Σ^{*}.

Then:
$\left.\left(q_{1}, c w, \gamma_{1} \gamma\right)\right|_{M}\left(q_{2}, w, \gamma_{2} \gamma\right)$ iff $\left(\left(q_{1}, c, \gamma_{1}\right),\left(q_{2}, \gamma_{2}\right)\right) \in \Delta$.
Let $\mid-M^{*}$ be the reflexive, transitive closure of $\mid-M$.
C_{1} yields configuration C_{2} iff $C_{1} \mid-{ }_{M}^{*} C_{2}$

Recap: Computations and Acceptance

A computation by M is a finite sequence of configurations C_{0}, C_{1}, \ldots, C_{n} for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε, γ), for some state $q \in K_{M}$ and some string γ in Γ^{*}, and
- $\left.\left.\left.\left.C_{0}\right|_{-м} C_{1}\right|_{-м} C_{2}\right|_{-} \ldots\right|_{-} C_{n}$.

A computation C of M is an accepting computation iff:

$$
\mathcal{C}=(s, w, \varepsilon) \mid-M^{*}(q, \varepsilon, \varepsilon) \text {, and } q \in A \text {. }
$$

M accepts a string w iff at least one of its computations accepts.
Other paths may:

- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The language accepted by M, denoted $L(M)$, is the set of all strings accented bv M.

Rejecting

A computation C of M is a rejecting computation iff:

- $C=\left.(s, w, \varepsilon)\right|^{-}{ }^{*}\left(q, w^{\prime}, \alpha\right)$,
- C is not an accepting computation, and
- M has no moves that it can make from (q, ε, α).
M rejects a string wiff all of its computations reject.

Note that it is possible that, on input w, M neither accepts nor rejects.

A PDA for Bal

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
$K=\{s\}$
$\Sigma=\{()$,
the states
$\Gamma=\{(\}$
the input alphabet
the stack alphabet
$A=\{s\}$
Δ contains:

$$
\begin{aligned}
& ((s,(, \varepsilon),(s,()) \\
& ((s,),(),(s, \varepsilon))
\end{aligned}
$$

**Important: This does not mean that the stack is empty

A PDA for $A^{n} B^{n}=\left\{\mathrm{a}^{n} b^{n}: n \geq 0\right\}$

A PDA for $\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
$K=\{s, f\} \quad$ the states
$\Sigma=\{a, b, c\} \quad$ the input alphabet
$\Gamma=\{a, b\} \quad$ the stack alphabet
$A=\{f\} \quad$ the accepting states
Δ contains: $((s, a, \varepsilon),(s, a))$

$$
((s, b, \varepsilon),(s, b))
$$

$((s, c, \varepsilon),(f, \varepsilon))$
$((f, a, a),(f, \varepsilon))$
$((f, \mathrm{~b}, \mathrm{~b}),(f, \varepsilon))$

A PDA for $\left\{a^{m} b^{2 n}: n \geq 0\right\}$

A PDA for PalEven $=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$

$$
\begin{aligned}
& S \rightarrow \varepsilon \\
& S \rightarrow \mathrm{a} \mathrm{Sa} \\
& S \rightarrow \mathrm{~b} . \mathrm{b}
\end{aligned}
$$

This one is nondeterministic

A PDA:

. A PDA for $\left\{w \in\{a, b\}^{*}: \#_{a}(w)=\#_{b}(w)\right\}$

A PDA for $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}$

More on Nondeterminism Accepting Mismatched lengths

$$
L=\left\{\mathrm{a}^{m_{\mathrm{b}} n}: m \neq n ; m, n>0\right\}
$$

Start with the case where $n=m$:

Need to fix it so that

- If stack and input are empty, halt and reject.
- If input is empty but stack is not $(m>n)$ (accept):
- If stack is empty but input is not $(m<n)$ (accept):

More on Nondeterminism Accepting Mismatches

$$
L=\left\{\mathrm{a}^{m} \mathrm{~b}^{n}: m \neq n ; m, n>0\right\}
$$

- If input is empty but stack is not $(m<n)$ (accept):

Putting It Together

$L=\left\{\mathrm{a}_{\mathrm{b}}{ }^{n}: m \neq n ; m, n>0\right\}$

- Jumping to the input-clearing state 4 :

Need to detect bottom of stack.

- Jumping to the stack-clearing state 3:

Need to detect end of input.

The Power of Nondeterminism

Consider $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} C^{n}: n \geq 0\right\}$.

PDA for it?

The Power of Nondeterminism

Consider $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} C^{n}: n \geq 0\right\}$.

Now consider $L=\neg A^{n} B^{n} C^{n}$. L is the union of two languages:

1. $\left\{w \in\{a, b, c\}^{*}:\right.$ the letters are out of order $\}$, and
2. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(i \neq j$ or $j \neq k)$) (in other words, unequal numbers of a's, b's, and c's).

Are the Context-Free Languages Closed Under Complement?

$\neg \mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}} \mathrm{C}^{\mathrm{n}}$ is context free.
If the CF languages were closed under complement, then

$$
\neg \neg A^{n} B^{n} C^{n}=A^{n} B^{n} C^{n}
$$

would also be context-free.

But we will prove that it is not.

[^0]
Reducing Nondeterminism

- Jumping to the input-clearing state 4:

Need to detect bottom of stack, so push \# onto the stack before we start.

- Jumping to the stack-clearing state 3:

Need to detect end of input. Add to L a termination character (e.g., \$)

- Jumping to the input-clearing state 4 :

Reducing Nondeterminism

- Jumping to the stack-clearing state 3 :

What about a PDA to accept $\left\{w w: w \in\{a, b\}^{*}\right\}$?

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:
Can describe with context-free grammar

Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.

Proof (by construction):

The idea: Let the stack do the work.
Two approaches:

- Top down
- Bottom up

Top Down

The idea: Let the stack keep track of expectations.
Example: Arithmetic expressions
$E \rightarrow E+T$
$E \rightarrow T$
$T \rightarrow T * F$
$T \rightarrow F$
$F \rightarrow(E)$
$F \rightarrow i d$
(1) $(q, \varepsilon, E),(q, E+T)$
(7) $(q, i d, i d),(q, \varepsilon)$
(2) $(q, \varepsilon, E),(q, T)$
(8) $(q,(,(),(q, \varepsilon)$
(3) $(q, \varepsilon, T),\left(q, T^{*} F\right)$
(9) $(q),),),(q, \varepsilon)$
(4) $(q, \varepsilon, T),(q, F)$
(10) $(q,+,+),(q, \varepsilon)$
(5) $(q, \varepsilon, F),(q,(E))$
(11) $(q, *, *),(q, \varepsilon)$
(6) $(q, \varepsilon, F),(q, i d)$

緅紋
 A Top-Down Parser

The outline of M is:

$M=(\{p, q\}, \Sigma, V, \Delta, p,\{q\})$, where Δ contains:

- The start-up transition $((p, \varepsilon, \varepsilon),(q, S))$.
- For each rule $X \rightarrow s_{1} s_{2} \ldots s_{n}$. in R, the transition: $\left((q, \varepsilon, X),\left(q, s_{1} s_{2} \ldots s_{n}\right)\right)$.
- For each character $c \in \Sigma$, the transition:
$((q, c, c),(q, \varepsilon))$.

Another Example

(1) $S \rightarrow a S d$
(2) $S \rightarrow T$
(3) $S \rightarrow U$
(4) $T \rightarrow a \mathrm{Tc}$
(5) $T \rightarrow V$
(6) $U \rightarrow$ bUd
(7) $U \rightarrow V$
(8) $V \rightarrow b V_{c}$
(9) $V \rightarrow \varepsilon$
input $=\mathrm{a} a \mathrm{~b} \quad \mathrm{c} d \mathrm{~d}$

Another Example

$L=\left\{\mathrm{a}^{n_{\mathrm{b}} m_{\mathrm{C}}}{ }^{p} \mathrm{~d}^{q}: m+n=p+q\right\}$
(1) $S \rightarrow a S d$
(2) $S \rightarrow T$
$0(p, \varepsilon, \varepsilon),(q, S)$
$(q, \varepsilon, S),(q, a S d)$
(3) $S \rightarrow U$
(4) $T \rightarrow a \mathrm{Tc}$
(5) $T \rightarrow V$
(6) $U \rightarrow b U d$
(7) $U \rightarrow V$
(8) $V \rightarrow b V_{c}$
$(q, \varepsilon, S),(q, T)$
$(q, \varepsilon, S),(q, U)$
$(q, \varepsilon, T),(q, a T c)$
$(q, \varepsilon, T),(q, V)$
$6(q, \varepsilon, U),(q, b \cup d)$
$7(q, \varepsilon, U),(q, V)$
(9) $V \rightarrow \varepsilon$
$8(q, \varepsilon, V),\left(q, b V_{c}\right)$
$9(q, \varepsilon, V),(q, \varepsilon)$
$10(q, a, a),(q, \varepsilon)$
$11(q, b, b),(q, \varepsilon)$
input = a a b c d d
$12(q, c, c),(q, \varepsilon)$
$13(q, d, d),(q, \varepsilon)$
trans
state
unread input
stack

The Other Way to Build a PDA - Directly

(1) $S \rightarrow a S d$
(6) $U \rightarrow b U d$
(2) $S \rightarrow T$
(7) $U \rightarrow V$
(3) $S \rightarrow U$
(8) $V \rightarrow \mathrm{~b} V \mathrm{C}$
(4) $T \rightarrow a T c$
(9) $V \rightarrow \varepsilon$
(5) $T \rightarrow V$
input $=a \operatorname{abcd} d$

The Other Way to Build a PDA - Directly

$L=\left\{a^{n} b^{m} \mathrm{C}^{p_{\mathrm{d}} q}: m+n=p+q\right\}$
(1) $S \rightarrow a S d$
(6) $U \rightarrow \mathrm{~b} U \mathrm{~d}$
(2) $S \rightarrow T$
(7) $U \rightarrow V$
(3) $S \rightarrow U$
(8) $V \rightarrow \mathrm{~b} V_{\mathrm{C}}$
(4) $T \rightarrow a T_{c}$
(9) $V \rightarrow \varepsilon$
(5) $T \rightarrow V$

input $=\mathrm{a} a \mathrm{~b} \mathrm{c} d \mathrm{~d}$

Notice Nondeterminism

```
Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial languages.
Example: \(A^{n} B^{n}=\left\{a^{n} b^{n}: n \geq 0\right\}\)
\(A\) grammar for \(A^{n} B^{n}\) is: \(\quad A\) PDA \(M\) for \(A^{n} B^{n}\) is:
(0) \(((p, \varepsilon, \varepsilon),(q, S))\)
[1] \(S \rightarrow\) aSb
(1) \(((q, \varepsilon, S),(q, a S b))\)
[2] \(S \rightarrow \varepsilon\)
(2) \(((q, \varepsilon, S),(q, \varepsilon))\)
(3) \(((q, a, a),(q, \varepsilon))\)
(4) \(((q, b, b),(q, \varepsilon))\)
```

But transitions 1 and 2 make M nondeterministic.
A directly constructed machine for $\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}$:

Bottom-Up

The idea: Let the stack keep track of what has been found.
(1) $E \rightarrow E+T$
(2) $E \rightarrow T$
(3) $T \rightarrow T * F$
(4) $T \rightarrow F$
(5) $F \rightarrow(E)$
(6) $F \rightarrow i d$

Reduce Transitions:
(1) $(p, \varepsilon, T+E),(p, E)$
(2) $(p, \varepsilon, T),(p, E)$
(3) $(p, \varepsilon, F * T),(p, T)$
(4) $(p, \varepsilon, F),(p, T)$
(5) $(p, \varepsilon) E(),,(p, F)$
(6) $(p, \varepsilon$, id $),(p, F)$

Shift Transitions
(7) $(p$, id, $\varepsilon),(p$, id)
(8) $(p,(, \varepsilon),(p,()$
(9) $(p),, \varepsilon),(p)$,
(10) $(p,+, \varepsilon),(p,+)$
(11) $(p, *, \varepsilon),(p, *)$

A Bottom-Up Parser

The outline of M is:

$M=(\{p, q\}, \Sigma, V, \Delta, p,\{q\})$, where Δ contains:

- The shift transitions: $((p, c, \varepsilon),(p, c))$, for each $c \in \Sigma$.
- The reduce transitions: $\left(\left(p, \varepsilon,\left(s_{1} s_{2} \ldots s_{n}\right)^{\mathrm{R}}\right),(p, X)\right)$, for each rule $X \rightarrow s_{1} s_{2} \ldots s_{n}$. in G.
- The finish up transition: $((p, \varepsilon, S),(q, \varepsilon))$.

[^0]: $L=\left\{a^{n_{b} m_{C}}{ }^{p}: n, m, p \geq 0\right.$ and $n \neq m$ or $\left.m \neq p\right\}$
 $S \rightarrow N C \quad \quad / * n \neq m$, then arbitrary c's
 $S \rightarrow Q P \quad / *$ arbitrary a's, then $p \neq m$
 $N \rightarrow A \quad / *$ more a's than b's
 $N \rightarrow B \quad \quad / *$ more b's than a's
 $A \rightarrow \mathrm{a}$
 $A \rightarrow a A$
 $A \rightarrow \mathrm{a} A \mathrm{~b}$
 $B \rightarrow \mathrm{~b}$
 $B \rightarrow B$ b
 $B \rightarrow \mathrm{aBb}$
 $C \rightarrow \varepsilon \mid \subset C \quad /^{*}$ add any number of c's
 $P \rightarrow B^{\prime} \quad / *$ more b's than c's
 $P \rightarrow C^{\prime} \quad / *$ more c's than b's
 $B^{\prime} \rightarrow$ b
 $B^{\prime} \rightarrow \mathrm{b} B^{\prime}$
 $B^{\prime} \rightarrow \mathrm{b} B^{\prime} \mathrm{C}$
 $C^{\prime} \rightarrow \mathrm{C} \mid C^{\prime} \mathrm{C}$
 $C^{\prime} \rightarrow C^{\prime}{ }^{\prime}$
 $C^{\prime} \rightarrow \mathrm{b} C^{\prime} \mathrm{c}$
 $Q \rightarrow \varepsilon \mid a Q \quad$ /* prefix with any number of a's

