

ALL W	Eliminating	Symmetric Recursive Rules
	$\begin{array}{l} S^{*} \rightarrow \varepsilon \\ S^{*} \rightarrow S \\ S \rightarrow SS \\ S \rightarrow (S) \\ S \rightarrow () \end{array}$	
	Replace $S \rightarrow S$	SS with one of:
	$S ightarrow SS_1 \ S ightarrow S_1S$	/* force branching to the left /* force branching to the right
	So we get:	
	$S^* o \varepsilon$ $S^* o S$	$\begin{array}{l} S \rightarrow SS_1 \\ S \rightarrow S_1 \\ S_1 \rightarrow (S) \\ S_1 \rightarrow () \end{array}$

Ambiguous Attachment		
The dangling else problem:		
<stmt> ::= if <cond> then <stmt> <stmt> ::= if <cond> then <stmt> else <stmt></stmt></stmt></cond></stmt></stmt></cond></stmt>		
Consider:		
$\texttt{if } \textbf{cond}_1 \texttt{ then } \underline{\texttt{if } \textbf{cond}_2 \texttt{ then } \textbf{st}_1 \texttt{ else } \textbf{st}_2}$		

A STATE OF A STATE

の一次に

Removing Unit Productions

removeUnits(G) =

1. Let G' = G.

- 2. Until no unit productions remain in G' do:
 - 2.1 Choose some unit production $X \rightarrow Y$.
 - 2.2 Remove it from G'.
 - 2.3 Consider only rules that still remain. For every rule $Y \rightarrow \beta$, where $\beta \in V^*$, do: Add to *G'* the rule $X \rightarrow \beta$ unless it is a rule that has already been removed once.
- 3. Return G'.

After removing epsilon productions and unit productions, all rules whose right hand sides have length 1 are in Chomsky Normal Form.

N.A.W	Re	moving Unit Productions
0,00,00,00,00,00,00,00,00,00,00,00,00,0	2.1 Choo 2.2 Rem 2.3 Cons) = productions remain in G' do: ose some unit production $X \rightarrow Y$. ove it from G' . sider only rules that still remain. For every rule $Y \rightarrow \beta$, re $\beta \in V^*$, do: Add to G' the rule $X \rightarrow \beta$ unless it is a rule that has already been removed once.
	Example:	$S \rightarrow X Y$ $X \rightarrow A$ $A \rightarrow B \mid a$ $B \rightarrow b$ $Y \rightarrow T$ $T \rightarrow Y \mid c$


```
An Example
                                                                                    S \rightarrow aACa \mid aAa \mid aCa \mid aa
                                                                                    A \rightarrow B \mid a
                                                                                    B \rightarrow C \mid c
              C \rightarrow C C \mid C
                                  Next we apply removeUnits:
                                   Remove A \rightarrow B. Add A \rightarrow C \mid c.
No. of the local diversion of the local diver
                                   Remove B \rightarrow C. Add B \rightarrow {}_{\bigcirc}C (B \rightarrow {}_{\bigcirc}, already there).
                                   Remove A \rightarrow C. Add A \rightarrow C C (A \rightarrow C, already there).
                                   So removeUnits returns:
                                                                                      S \rightarrow aACa \mid aAa \mid aCa \mid aa
                                                                                     A \rightarrow a | c | cC
                                                                                      B \rightarrow c \mid cC
                                                                                       C \rightarrow C C \mid C
```


	Manipulating the Stack			
14 4 4 4	c will be written as cab			
	a			
	b			
	If $c_1 c_2 \dots c_n$ is pushed onto the stack: $ \begin{array}{c} c_1\\ c_2\\ c_n\\ c\\ a\\ b\end{array} \end{array} $ $c_1 c_2 \dots c_n cab$			

Let *c* be any element of $\Sigma \cup \{\epsilon\}$, Let γ_1 , γ_2 and γ be any elements of Γ^* , and Let *w* be any element of Σ^* .

Then:

 $(q_1, cw, \gamma_1\gamma) \mid_{M} (q_2, w, \gamma_2\gamma) \text{ iff } ((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta.$

Let $|-_{M}^{*}$ be the reflexive, transitive closure of $|-_{M}$.

 C_1 yields configuration C_2 iff $C_1 \mid -M^* C_2$

Nondeterminism

If *M* is in some configuration (q_1, s, γ) it is possible that:

- $\bullet \Delta$ contains exactly one transition that matches.
- $\bullet \Delta$ contains more than one transition that matches.
- Δ contains no transition that matches.

NATION AND A REAL PROPERTY OF

の時代の

