Recap: Ambiguity

A grammar is ambiguous iff there is at least one string in $L(G)$ for which G produces more than one parse tree.

For many applications of context-free grammars, this is a problem.

Example: A programming language.

- If there can be two different structures for a string in the language, there can be two different meanings.
- Not good!

An Arithmetic Expression Grammar

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }
\end{aligned}
$$

Inherent Ambiguity

Some CF languages have the property that every grammar for them is ambiguous. We call such languages inherently ambiguous.

Example:
$L=\left\{a^{n} b^{n} C^{m}: n, m \geq 0\right\} \cup\left\{a^{n^{m}} b^{m} C^{m}: n, m \geq 0\right\}$.

Inherent Ambiguity

$L=\left\{a^{n} b^{n} C^{m}: n, m \geq 0\right\} \cup\left\{a^{n} b^{m} C^{m}: n, m \geq 0\right\}$.
One grammar for L has the rules:
$S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow S_{1} \mathrm{C} \mid A \quad / *$ Generate all strings in $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{C}^{m}\right\}$.
$A \rightarrow \mathrm{a} A \mathrm{~b} \mid \varepsilon$
$S_{2} \rightarrow a S_{2} \mid B \quad / *$ Generate all strings in $\left\{a^{m_{b}} b^{m} C^{m}\right\}$.
$B \rightarrow \mathrm{~b} B_{\mathrm{c}} \mid \varepsilon$

Consider any string of the form $a^{n} b^{n} C^{n}$.
It turns out that L is inherently ambiguous.

路符
 Inherent Ambiguity

Both of the following problems are undecidable:

- Given a context-free grammar G, is G ambiguous?
- Given a context-free language L, is L inherently ambiguous?

But We Can Often Reduce Ambiguity

We can get rid of:

- some ε rules like $S \rightarrow \varepsilon$,
- rules with symmetric right-hand sides, e.g.,
$S \rightarrow S S$
$E \rightarrow E+E$
- rule sets that lead to ambiguous attachment of optional postfixes.

A Highly Ambiguous Grammar

$S \rightarrow \varepsilon$
$S \rightarrow S S$
$S \rightarrow(S)$

Resolving the Ambiguity with a Different Grammar

The biggest problem is the ε rule.
A different grammar for the language of balanced parentheses:

We'd like to have an
$S^{\star} \rightarrow \varepsilon \quad$ algorithm for removing all ε -
$S^{*} \rightarrow S$ productions...
$S \rightarrow S S$
... except for the case where
$S \rightarrow(S)$
ε - is actually in the
$S \rightarrow()$
language;
then we introduce a new start symbol and have one ε-production whose left side is that symbol.

Nullable Nonterminals

Examples:

$$
\begin{aligned}
& S \rightarrow a T a \\
& T \rightarrow \varepsilon \\
& \\
& S \rightarrow a T a \\
& T \rightarrow A B \\
& A \rightarrow \varepsilon \\
& B \rightarrow \varepsilon
\end{aligned}
$$

A nonterminal X is nullable iff either:
(1) there is a rule $X \rightarrow \varepsilon$, or
(2) there is a rule $X \rightarrow P Q R \ldots$ and P, Q, R, \ldots are all nullable.

Nullable Nonterminals

A nonterminal X is nullable iff either:
(1) there is a rule $X \rightarrow \varepsilon$, or
(2) there is a rule $X \rightarrow P Q R \ldots$ and P, Q, R, \ldots are all nullable.

So compute N, the set of nullable nonterminals, as follows:

1. Set N to the set of nonterminals that satisfy (1).
2. Repeat until an entire pass is made without adding anything to N

Evaluate all other nonterminals with respect to (2).
If any nonterminal satisfies (2) and is not in N, insert it.

3
 A General Technique for Getting Rid of ε-Rules

Definition: a rule is modifiable iff it is of the form:
$P \rightarrow \alpha Q \beta$, for some nullable Q.
removeEps(G: cfg) =

1. Let $G^{\prime}=G$.
2. Find the set N of nullable nonterminals in G^{\prime}.
3. Repeat until G^{\prime} contains no modifiable rules that haven't been processed:

Given the rule $P \rightarrow \alpha Q \beta$, where $Q \in N$, add the rule $P \rightarrow \alpha \beta$
if it is not already present and if $\alpha \beta \neq \varepsilon$ and if $P \neq \alpha \beta$.
4. Delete from G^{\prime} all rules of the form $X \rightarrow \varepsilon$.
5. Return G^{\prime}.
$L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$

An Example

$$
\begin{aligned}
G=\{\{S, & T, A, B, C, \mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, R, S), \\
R=\{ & S \rightarrow \mathrm{a} \mathrm{a} \\
& T \rightarrow A B C \\
& A \rightarrow a \mid C \\
B & \rightarrow B \mathrm{~b} \mid C \\
& C \rightarrow \mathrm{c} \mid \varepsilon\}
\end{aligned}
$$

removeEps(G: cfg) =

1. Let $G^{\prime}=G$.
2. Find the set N of nullable nonterminals in G^{\prime}.
3. Repeat until G^{\prime} contains no modifiable rules that haven't been processed:
Given the rule $P \rightarrow \alpha Q \beta$, where $Q \in N$, add the rule $P \rightarrow \alpha \beta$
if it is not already present and if $\alpha \beta \neq \varepsilon$ and if $P \neq \alpha \beta$.
4. Delete from G^{\prime} all rules of the form $X \rightarrow \varepsilon$.
5. Return G^{\prime}

What lf $\varepsilon \in L$?

atmostoneEps(G: cfg) =

1. $G^{\prime \prime}=$ removeEps(G).
2. If S_{G} is nullable then $\quad / *$ i. e., $\varepsilon \in L(G)$
2.1 Create in $G^{\prime \prime}$ a new start symbol S^{\star}.
2.2 Add to $R_{G^{\prime \prime}}$ the two rules:

$$
\begin{aligned}
& S^{*} \rightarrow \varepsilon \\
& S^{*} \rightarrow S_{G} .
\end{aligned}
$$

3. Return $G^{\prime \prime}$.

But There is Still Ambiguity

$$
\begin{array}{ll}
S^{\star} \rightarrow \varepsilon & \text { What about }()()() ? \\
S^{\star} \rightarrow S & \\
S \rightarrow S S & \\
S \rightarrow(S) & \\
S \rightarrow() &
\end{array}
$$

Eliminating Symmetric Recursive Rules

$$
\begin{aligned}
& S^{*} \rightarrow \varepsilon \\
& S^{*} \rightarrow S \\
& S \rightarrow S S \\
& S \rightarrow(S) \\
& S \rightarrow()
\end{aligned}
$$

Replace $S \rightarrow S S$ with one of:

$$
\begin{array}{ll}
S \rightarrow S S_{1} & /^{*} \text { force branching to the left } \\
S \rightarrow S_{1} S & /^{*} \text { force branching to the righ }
\end{array}
$$

So we get:

$$
\begin{array}{ll}
S^{*} \rightarrow \varepsilon & S \rightarrow S S_{1} \\
S^{*} \rightarrow S & S \rightarrow S_{1} \\
& S_{1} \rightarrow(S) \\
& S_{1} \rightarrow()
\end{array}
$$

Eliminating Symmetric Recursive Rules

```
So we get:
    S*}->
    S*}->
    S->SS1
    S->S
    S }->(S
    S}->(
```


Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }\}
\end{aligned}
$$

Problem 1: Associativity

Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }\}
\end{aligned}
$$

Problem 2: Precedence

Arithmetic Expressions - A Better Way

$$
\begin{aligned}
& E \rightarrow E+T \\
& E \rightarrow T \\
& T \rightarrow T^{\star} F \\
& T \rightarrow F \\
& F \rightarrow(E) \\
& F \rightarrow i d
\end{aligned}
$$

Ambiguous Attachment

The dangling else problem:
<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:
if cond ${ }_{1}$ then if cond ${ }_{2}$ then st $_{1}$ else st $_{2}$

```
复泽
```


The Java Fix

```
<Statement> ::= <IfThenStatement> | <lfThenElseStatement> | <IfThenElseStatementNoShortlf>
<StatementNoShortlf> ::= <block> |
<lfThenElseStatementNoShortlf> | ...
<lfThenStatement> ::= if ( <Expression> ) <Statement>
<IfThenElseStatement> ::= if ( <Expression>)
<StatementNoShortlf> el se <Statement>
<lfThenElseStatementNoShortlf> ::=
if ( <Expression> ) <StatementNoShortlf> else <StatementNoShortlf>
```


Going Too Far

$S \rightarrow N P V P$
$N P \rightarrow$ the Nominal | Nominal | ProperNoun | NP PP
Nominal $\rightarrow N \mid$ Adjs N
$N \rightarrow$ cat | girl|dogs| ball| chocolate| bat
ProperNoun \rightarrow Chris |Fluffy
Adjs \rightarrow Adj Adjs | Adj
Adj \rightarrow young | older | smart
$V P \rightarrow V|V N P| V P P P$
$V \rightarrow$ like|likes|thinks|hits
$P P \rightarrow$ Prep NP
Prep \rightarrow with

- Chris likes the girl with the cat.
- Chris shot the bear with a rifle.

Normal Forms

A normal form F for a set C of data objects is a form, i.e., a set of syntactically valid objects, with the following two properties:

- For every element c of C, except possibly a finite set of special cases, there exists some element f of F such that f is equivalent to c with respect to some set of tasks.
- F is simpler than the original form in which the elements of C are written. By "simpler" we mean that at least some tasks are easier to perform on elements of F than they would be on elements of C.

Normal Forms

If you want to design algorithms, it is often useful to have a limited number of input forms that you have to deal with.

Normal forms are designed to do just that. Various ones have been developed for various purposes.

Examples:

- Disjunctive normal form for database queries so that they can be entered in a query-by-example grid.
- Jordan normal form for a square matrix, in which the matrix is almost diagonal in the sense that its only non-zero entries lie on the diagonal and the superdiagonal.
- Various normal forms for grammars to support specific parsing techniques.

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the following form:

- $X \rightarrow a \beta$, where $a \in \Sigma$ and $\beta \in(V-\Sigma)^{*}$.

Advantages:

- Every derivation of a string s contains $|s|$ rule applications.
- Greibach normal form grammars can easily be converted to pushdown automata with no ε transitions. This is useful because such PDAs are guaranteed to halt.

Normal Forms
Theorem: Given a CFG G, there exist
Chomsky normal form grammar G_{C} su
Proof: The proof is by construction.
Details of both are complex but straightforward; I leave them for you to read in the textbook and/or in the next 16 slides.

Theorem: Given a CFG G, there exists an equivalent Greibach normal form grammar G_{G} such that:

$$
L\left(G_{G}\right)=L(G)-\{\varepsilon\}
$$

Proof: The proof is also by construction.

Converting to a Normal Form

1. Apply some transformation to G to get rid of undesirable property 1 . Show that the language generated by G is unchanged.
2. Apply another transformation to G to get rid of undesirable property 2. Show that the language generated by G is unchanged and that undesirable property 1 has not been reintroduced.
3. Continue until the grammar is in the desired form.

Rule Substitution

$$
\begin{aligned}
& X \rightarrow \mathrm{a} Y_{\mathrm{C}} \\
& Y \rightarrow \mathrm{~b} \\
& Y \rightarrow Z Z
\end{aligned}
$$

We can replace the X rule with the rules:

$$
\begin{aligned}
& X \rightarrow \mathrm{abc} \\
& X \rightarrow \mathrm{a} Z Z_{\mathrm{c}}
\end{aligned}
$$

$$
X \Rightarrow a Y_{\mathrm{C}} \Rightarrow a Z Z_{\mathrm{C}}
$$

Rule Substitution

Theorem: Let G contain the rules:

$$
X \rightarrow \alpha Y \beta \quad \text { and } \quad Y \rightarrow \gamma_{1}\left|\gamma_{2}\right| \ldots \mid \gamma_{n},
$$

Replace $X \rightarrow \alpha Y \beta$ by:

$$
X \rightarrow \alpha \gamma_{1} \beta, \quad X \rightarrow \alpha \gamma_{2} \beta, \quad \ldots, \quad X \rightarrow \alpha \gamma_{n} \beta
$$

The new grammar G^{\prime} will be equivalent to G.

Rule Substitution

Replace $X \rightarrow \alpha Y \beta$ by:

$$
X \rightarrow \alpha \gamma_{1} \beta, \quad X \rightarrow \alpha \gamma_{2} \beta, \quad \ldots, X \rightarrow \alpha \gamma_{n} \beta
$$

Proof:

- Every string in $L(G)$ is also in $L\left(G^{\prime}\right)$:

If $X \rightarrow \alpha Y \beta$ is not used, then use same derivation.
If it is used, then one derivation is:
$S \Rightarrow \ldots \Rightarrow \delta X \phi \Rightarrow \delta \alpha Y \beta \phi \Rightarrow \delta \alpha \gamma_{k} \beta \phi \Rightarrow \ldots \Rightarrow w$
Use this one instead:

$$
S \Rightarrow \ldots \Rightarrow \delta X \phi \Rightarrow \quad \delta \alpha \gamma_{k} \beta \phi \Rightarrow \ldots \Rightarrow w
$$

- Every string in $L\left(G^{*}\right)$ is also in $L(G)$: Every new rule can be simulated by old rules.

Conversion to Chomsky Normal Form

1. Remove all ε-rules, using the algorithm removeEps.
2. Remove all unit productions (rules of the form $A \rightarrow B$).
3. Remove all rules whose right hand sides have length greater than 1 and include a terminal:
(e.g., $A \rightarrow \mathrm{a} B$ or $A \rightarrow B a C$)
4. Remove all rules whose right hand sides have length greater than 2:
(e.g., $A \rightarrow B C D E)$

Recap: Removing ε-Productions

Remove all ε productions:
(1) If there is a rule $P \rightarrow \alpha Q \beta$ and Q is nullable,

Then: \quad Add the rule $P \rightarrow \alpha \beta$.
(2) Delete all rules $Q \rightarrow \varepsilon$.

Removing ε-Productions

Example:

$$
\begin{aligned}
& S \rightarrow a A \\
& A \rightarrow B \mid C D C \\
& B \rightarrow \varepsilon \\
& B \rightarrow a \\
& C \rightarrow B D \\
& D \rightarrow b \\
& D \rightarrow \varepsilon
\end{aligned}
$$

Unit Productions

A unit production is a rule whose right-hand side consists of a single nonterminal symbol.

Example:

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow A \\
& A \rightarrow B \mid a \\
& B \rightarrow \mathrm{~b} \\
& Y \rightarrow T \\
& T \rightarrow Y \mid c
\end{aligned}
$$

Removing Unit Productions

removeUnits $(G)=$

1. Let $G^{\prime}=G$.
2. Until no unit productions remain in G^{\prime} do:
2.1 Choose some unit production $X \rightarrow Y$.
2.2 Remove it from G^{\prime}.
2.3 Consider only rules that still remain. For every rule $Y \rightarrow \beta$, where $\beta \in V^{*}$, do:

Add to G ' the rule $X \rightarrow \beta$ unless it is a rule that has already been removed once.

3. Return G'.

After removing epsilon productions and unit productions, all rules whose right hand sides have length 1 are in Chomsky Normal Form.

[^0]
Removing Unit Productions

2.1 Choose some unit production $X \rightarrow Y$.
2.3 Consider only rules that still remain. For every rule $Y \rightarrow \beta$,

Add to G^{\prime} the rule $X \rightarrow \beta$ unless it is a rule that has already been removed once.

Mixed Rules

removeMixed $(G)=$

1. Let $G^{\prime}=G$.
2. Create a new nonterminal T_{a} for each terminal a in Σ.
3. Modify each rule whose right-hand side has length greater than 1 and that contains a terminal symbol by substituting T_{a} for each occurrence of the terminal a.
4. Add to G, for each T_{a}, the rule $T_{a} \rightarrow a$.
5. Return G^{\prime}.

Example:
$A \rightarrow a$
$A \rightarrow a B$
$A \rightarrow B a C$
$A \rightarrow B \mathrm{~b} C$

Long Rules

removeLong $(G)=$

1. Let $G^{\prime}=G$.
2. For each rule r of the form:

$$
A \rightarrow N_{1} N_{2} N_{3} N_{4} \ldots N_{n}, n>2
$$

create new nonterminals $M_{2}, M_{3}, \ldots M_{n-1}$.
3. Replace r with the rule $A \rightarrow N_{1} M_{2}$.
4. Add the rules:

$$
\begin{aligned}
& M_{2} \rightarrow N_{2} M_{3}, \\
& M_{3} \rightarrow N_{3} M_{4}, \ldots \\
& M_{n-1} \rightarrow N_{n-1} N_{n} .
\end{aligned}
$$

5. Return G^{\prime}.

Example:
$A \rightarrow B C D E F$

An Example

$S \rightarrow \mathrm{a} A C \mathrm{a}$
$A \rightarrow B \mid a$
$B \rightarrow C \mid \mathrm{c}$
$C \rightarrow c \mid \varepsilon$
removeEps returns:
$S \rightarrow$ a $A C a|a A a| a C a \mid a \mathrm{a}$
$A \rightarrow B \mid a$
$B \rightarrow C \mid \mathrm{c}$
$C \rightarrow C \mid \mathrm{c}$

An Example

$$
\begin{aligned}
& S \rightarrow a A C a \mid \text { a } A a \mid \text { aCa } \mid \text { aa } \\
& A \rightarrow B \mid a \\
& B \rightarrow C \mid c \\
& C \rightarrow C \mid c
\end{aligned}
$$

Next we apply removeUnits:
Remove $A \rightarrow B$. Add $A \rightarrow C \mid c$.
Remove $B \rightarrow C$. Add $B \rightarrow C C(B \rightarrow c$, already there $)$.
Remove $A \rightarrow C$. Add $A \rightarrow c C(A \rightarrow c$, already there $)$.
So removeUnits returns:
$S \rightarrow$ a $A C a \mid$ a $A a|a C a| a a$
$A \rightarrow \mathrm{a}|\mathrm{c}| \mathrm{c} C$
$B \rightarrow c \mid c C$
$C \rightarrow \mathrm{C} \mid \mathrm{c}$

An Example

$$
\begin{aligned}
& S \rightarrow a A C a|a A a| a C a \mid a a \\
& A \rightarrow a|c| c C \\
& B \rightarrow c \mid c C \\
& C \rightarrow c \mid c
\end{aligned}
$$

Next we apply removeMixed, which returns:

$$
\begin{aligned}
& S \rightarrow T_{\mathrm{a}} A C T_{\mathrm{a}}\left|T_{\mathrm{a}} A T_{\mathrm{a}}\right| T_{\mathrm{a}} C T_{\mathrm{a}} \mid T_{\mathrm{a}} T_{\mathrm{a}} \\
& A \rightarrow \mathrm{a}|\mathrm{C}| T_{\mathrm{c}} C \\
& B \rightarrow \mathrm{c} \mid T_{\mathrm{c}} C \\
& C \rightarrow T_{\mathrm{c}} C \mid \mathrm{c} \\
& T_{\mathrm{a}} \rightarrow \mathrm{a} \\
& T_{\mathrm{c}} \rightarrow \mathrm{C}
\end{aligned}
$$

Finally, we apply removeLong, which returns:

$$
\begin{array}{lll}
S \rightarrow T_{\mathrm{a}} S_{1} & S \rightarrow T_{\mathrm{a}} S_{3} & S \rightarrow T_{\mathrm{a}} S_{4} \\
S_{1} \rightarrow A S_{2} & S_{3} \rightarrow A T_{\mathrm{a}} & S_{4} \rightarrow C T_{\mathrm{a}} \\
S_{2} \rightarrow C T_{\mathrm{a}} & \\
A \rightarrow \mathrm{a}|\mathrm{c}| T_{\mathrm{c}} C & & \\
B \rightarrow \mathrm{c} \mid T_{\mathrm{c}} C & \\
C \rightarrow T_{\mathrm{c}} \mid \mathrm{c} & & \\
T_{\mathrm{a}} \rightarrow \mathrm{a} & & \\
T_{\mathrm{c}} \rightarrow \mathrm{c} & & \\
\hline
\end{array}
$$

The Price of Normal Forms

$E \rightarrow E+E$
$E \rightarrow(E)$
$E \rightarrow$ id
Converting to Chomsky normal form:
$E \rightarrow E E^{\prime}$
$E^{\prime} \rightarrow P E$
$E \rightarrow L E^{\prime \prime}$
$E^{\prime \prime} \rightarrow E R$
$E \rightarrow$ id
$L \rightarrow$ (
$R \rightarrow$)
$P \rightarrow+$
Conversion doesn't change weak generative capacity but it may change strong generative capacity.

Pushdown Automata

Recognizing Context-Free Languages

Two notions of recognition:
(1) Say yes or no, just like with FSMs
(2) Say yes or no, AND
if yes, describe the structure

$a+b$ * c

Definition of a Pushdown Automaton

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
K is a finite set of states
Σ is the input alphabet
Σ and Γ are not
Γ is the stack alphabet necessarily disjoint
$s \in K$ is the initial state
$A \subseteq K$ is the set of accepting states, and
Δ is the transition relation. It is a finite subset of

state input or ε string of state string of symbols symbols to pop to push
from top on top of stack of stack

Definition of a Pushdown Automaton

A configuration of M is an element of $K \times \Sigma^{*} \times \Gamma^{*}$.

An initial configuration of M is (s, w, ε), where w is the input string.

Manipulating the Stack

If $c_{1} c_{2} \ldots c_{n}$ is pushed onto the stack:
c_{1}
c_{2}
c_{n}
c
a
b
$c_{1} c_{2} \ldots c_{n} \mathrm{cab}$

Yields

Let c be any element of $\Sigma \cup\{\varepsilon\}$,
Let γ_{1}, γ_{2} and γ be any elements of Γ^{*}, and
Let w be any element of Σ^{*}.
Then:
$\left.\left(q_{1}, c w, \gamma_{1} \gamma\right)\right|_{M}\left(q_{2}, w, \gamma_{2} \gamma\right)$ iff $\left(\left(q_{1}, c, \gamma_{1}\right),\left(q_{2}, \gamma_{2}\right)\right) \in \Delta$.
Let $\mid-M^{*}$ be the reflexive, transitive closure of $\left.\right|_{M}$.
C_{1} yields configuration C_{2} iff $C_{1} \mid{ }_{M}{ }^{*} C_{2}$

Computations

A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε, γ), for some state $q \in K_{M}$ and some string γ in Γ^{*}, and
- $\left.\left.\left.\left.C_{0}\right|_{-} C_{1}\right|_{-} C_{2}\right|_{-} \ldots\right|_{-} C_{n}$.

Nondeterminism

If M is in some configuration $\left(q_{1}, s, \gamma\right)$ it is possible that:

- Δ contains exactly one transition that matches.
- Δ contains more than one transition that matches.
- Δ contains no transition that matches.

Accepting

A computation C of M is an accepting computation iff:

- $C=(s, w, \varepsilon) \mid-{ }_{M}{ }^{*}(q, \varepsilon, \varepsilon)$, and
- $q \in A$.
M accepts a string w iff at least one of its computations accepts.
Other paths may:
- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Rejecting

A computation C of M is a rejecting computation iff:

- $C=(s, w, \varepsilon) \mid-m^{*}\left(q, w^{\prime}, \alpha\right)$,
- C is not an accepting computation, and
- M has no moves that it can make from (q, ε, α).
M rejects a string wiff all of its computations reject.

Note that it is possible that, on input w, M neither accepts nor rejects.

A PDA for Bal

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
$K=\{s\} \quad$ the states
$\Sigma=\{()$,$\} \quad the input alphabet$
$\Gamma=\{(\} \quad$ the stack alphabet
$A=\{s\}$
Δ contains:
$((s,(, \varepsilon),(s,())$
$((s),(),,(s, \varepsilon))$
**Important: This does not mean that the stack is empty

A PDA for $A^{n} B^{n}=\left\{a^{m} b^{n}: n \geq 0\right\}$

A PDA for $\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
$K=\{s, f\} \quad$ the states
$\Sigma=\{a, b, c\} \quad$ the input alphabet
$\Gamma=\{a, b\} \quad$ the stack alphabet
$A=\{f\} \quad$ the accepting states
Δ contains: $((s, a, \varepsilon),(s, a))$

$$
((s, b, \varepsilon),(s, b))
$$

$((s, c, \varepsilon),(f, \varepsilon))$
$((f, \mathrm{a}, \mathrm{a}),(f, \varepsilon))$
$((f, \mathrm{~b}, \mathrm{~b}),(f, \varepsilon))$

APDA for $\left\{a^{n} b^{2 n}: n \geq 0\right\}$

(A PDA for PalEven $=\left\{w w^{R}: w \in\{a, b\}^{\star}\right\}$

$$
\begin{aligned}
& S \rightarrow \varepsilon \\
& S \rightarrow \mathrm{a} \mathrm{Sa} \\
& S \rightarrow \mathrm{~b} S \mathrm{~b}
\end{aligned}
$$

This one is nondeterministic

A PDA:

[^0]: M紋
 removeUnits $(G)=$

 1. Let $G^{\prime}=G$.
 2. Until no unit productions remain in G^{\prime} do:
 2.2 Remove it from G^{\prime}. where $\beta \in V^{*}$, do:
 3. Return G^{\prime}.

 Example: $\quad S \rightarrow X Y$
 $X \rightarrow A$
 $A \rightarrow B \mid a$
 $B \rightarrow \mathrm{~b}$
 $Y \rightarrow T$
 $T \rightarrow Y \mid \mathrm{c}$

