
1/16/2012

1

Removing Ambiguity

Chomsky Normal Form

Pushdown Automata

MA/CSSE 474
Theory of Computation

Recap: Ambiguity

A grammar is ambiguous iff there is at least one string

in L(G) for which G produces more than one parse tree.

For many applications of context-free grammars, this is

a problem.

Example: A programming language.

• If there can be two different structures for a string in

the language, there can be two different meanings.

• Not good!

1/16/2012

2

An Arithmetic Expression Grammar

E → E + E
E → E ∗ E
E → (E)
E → id

Inherent Ambiguity

Some CF languages have the property that every

grammar for them is ambiguous. We call such

languages inherently ambiguous.

Example:

L = {anbncm: n, m ≥ 0} ∪ {anbmcm: n, m ≥ 0}.

1/16/2012

3

Inherent Ambiguity

L = {anbncm: n, m ≥ 0} ∪ {anbmcm: n, m ≥ 0}.

One grammar for L has the rules:

S → S1 | S2

S1 → S1c | A /* Generate all strings in {anbncm}.

A → aAb | ε

S2 → aS2 | B /* Generate all strings in {anbmcm}.

B → bBc | ε

Consider any string of the form anbncn.

It turns out that L is inherently ambiguous.

Inherent Ambiguity

Both of the following problems are undecidable:

• Given a context-free grammar G, is G ambiguous?

• Given a context-free language L, is L inherently

ambiguous?

1/16/2012

4

But We Can Often Reduce Ambiguity

We can get rid of:

● some ε rules like S → ε,

● rules with symmetric right-hand sides, e.g.,

S → SS

E → E + E

● rule sets that lead to ambiguous attachment of

optional postfixes.

A Highly Ambiguous Grammar

S→ ε
S → SS

S → (S)

1/16/2012

5

Resolving the Ambiguity with a
Different Grammar

The biggest problem is the ε rule.

A different grammar for the language of balanced

parentheses:

S* → ε
S* → S

S → SS

S → (S)

S → ()

We'd like to have an
algorithm for removing all εεεε-
productions…
… except for the case where
εεεε- is actually in the
language;
then we introduce a new

start symbol and have one
εεεε-production whose left side
is that symbol.

Nullable Nonterminals

Examples:

S → aTa

T → ε

S → aTa

T → A B

A → ε
B → ε

A nonterminal X is nullable iff

either:

(1) there is a rule X → ε, or

(2) there is a rule X → PQR…

and P, Q, R, …

are all nullable.

1/16/2012

6

Nullable Nonterminals

A nonterminal X is nullable iff either:

(1) there is a rule X → ε, or

(2) there is a rule X → PQR… and P, Q, R, …

are all nullable.

So compute N, the set of nullable nonterminals, as follows:

1. Set N to the set of nonterminals that satisfy (1).

2. Repeat until an entire pass is made without adding

anything to N

Evaluate all other nonterminals with respect to (2).

If any nonterminal satisfies (2) and is not in N, insert it.

A General Technique for Getting Rid of εεεε-Rules

Definition: a rule is modifiable iff it is of the form:

P → αQβ, for some nullable Q.

removeEps(G: cfg) =
1. Let G′ = G.
2. Find the set N of nullable nonterminals in G′.
3. Repeat until G′ contains no modifiable rules that
haven’t been processed:

Given the rule P → αQβ, where Q ∈ N,
add the rule P → αβ

if it is not already present and if αβ ≠ ε and if P ≠ αβ.
4. Delete from G′ all rules of the form X → ε.
5. Return G′.

L(G′) = L(G) – {ε}

1/16/2012

7

An Example
G = {{S, T, A, B, C, a, b, c}, {a, b, c}, R, S),

R = { S → aTa

T → ABC
A → aA | C
B → Bb | C
C → c | ε }

removeEps(G: cfg) =
1. Let G′ = G.
2. Find the set N of nullable nonterminals in G′.
3. Repeat until G′ contains no modifiable rules that

haven’t been processed:
Given the rule P → αQβ, where Q ∈ N,

add the rule P → αβ
if it is not already present and if αβ ≠ ε

and if P ≠ αβ.
4. Delete from G′ all rules of the form X → ε.
5. Return G′.

What If εεεε ∈∈∈∈ L?

atmostoneEps(G: cfg) =

1. G′′ = removeEps(G).

2. If SG is nullable then /* i. e., ε ∈ L(G)

2.1 Create in G′′ a new start symbol S*.

2.2 Add to RG′′ the two rules:

S* → ε
S* → SG.

3. Return G′′.

1/16/2012

8

But There is Still Ambiguity

S* → ε What about ()()() ?

S* → S

S → SS

S → (S)

S → ()

Eliminating Symmetric Recursive Rules

S* → ε
S* → S
S → SS
S → (S)
S → ()

Replace S → SS with one of:

S → SS1 /* force branching to the left
S → S1S /* force branching to the right

So we get:

S* → ε S → SS1

S* → S S → S1

S1 → (S)
S1 → ()

1/16/2012

9

Eliminating Symmetric Recursive Rules

So we get:
S* → ε
S* → S
S → SS1

S → S1

S1 → (S)
S1 → ()

S*

S

S S1

S S1

S1

() () ()

Arithmetic Expressions

E → E + E
E → E ∗ E
E → (E)
E → id }

E E

E E E E

E E E E

id ∗ id ∗ id id ∗ id ∗ id

Problem 1: Associativity

1/16/2012

10

Arithmetic Expressions

E → E + E
E → E ∗ E
E → (E)
E → id }

E E

E E E E

E E E E

id ∗ id + id id ∗ id + id

Problem 2: Precedence

Arithmetic Expressions - A Better Way

E → E + T

E→ T

T → T * F

T → F

F → (E)

F → id

1/16/2012

11

Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:

if cond1 then if cond2 then st1 else st2

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> |
<IfThenElseStatementNoShortIf> | …

<IfThenStatement> ::= if (<Expression>) <Statement>
<IfThenElseStatement> ::= if (<Expression>)

<StatementNoShortIf> else <Statement>

<IfThenElseStatementNoShortIf> ::=
if (<Expression>) <StatementNoShortIf>
else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if (cond) <StatementNoShortIf> else <Statement>

The Java Fix

1/16/2012

12

Going Too Far

S → NP VP
NP → the Nominal | Nominal | ProperNoun | NP PP
Nominal → N | Adjs N
N → cat | girl | dogs | ball | chocolate |

bat

ProperNoun → Chris | Fluffy

Adjs → Adj Adjs | Adj
Adj → young | older | smart

VP → V | V NP | VP PP
V → like | likes | thinks | hits

PP → Prep NP
Prep → with

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

● Chris shot the bear with a rifle.

Going Too Far

1/16/2012

13

Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

● regular exprs.
or

● regular grammars ● context-free grammars
● recognize ● parse

Normal Forms

A normal form F for a set C of data objects is a form, i.e.,

a set of syntactically valid objects, with the following two

properties:

● For every element c of C, except possibly a finite set of

special cases, there exists some element f of F such

that f is equivalent to c with respect to some set of

tasks.

● F is simpler than the original form in which the elements

of C are written. By “simpler” we mean that at least

some tasks are easier to perform on elements of F than

they would be on elements of C.

1/16/2012

14

Normal Forms

If you want to design algorithms, it is often useful to have a limited
number of input forms that you have to deal with.

Normal forms are designed to do just that. Various ones have been
developed for various purposes.

Examples:

● Disjunctive normal form for database queries so that they can be
entered in a query-by-example grid.

● Jordan normal form for a square matrix, in which the matrix is
almost diagonal in the sense that its only non-zero entries lie on the
diagonal and the superdiagonal.

● Various normal forms for grammars to support specific parsing
techniques.

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the
following two forms:

● X → a, where a ∈ Σ, or
● X → BC, where B and C are elements of V - Σ.

Advantages:

● Parsers can use binary trees.
● Exact length of derivations is known:

S

A B

A A B B

a a b B B

b b

1/16/2012

15

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the

following form:

● X → a β, where a ∈ Σ and β ∈ (V - Σ)*.

Advantages:

● Every derivation of a string s contains |s| rule

applications.

●Greibach normal form grammars can easily be

converted to pushdown automata with no ε-

transitions. This is useful because such PDAs are

guaranteed to halt.

Normal Forms Exist

Theorem: Given a CFG G, there exists an equivalent

Chomsky normal form grammar GC such that:

L(GC) = L(G) – {ε}.

Proof: The proof is by construction.

Theorem: Given a CFG G, there exists an equivalent

Greibach normal form grammar GG such that:

L(GG) = L(G) – {ε}.

Proof: The proof is also by construction.

Details of both are
complex but
straightforward; I leave
them for you to read in
the textbook and/or in
the next 16 slides.

1/16/2012

16

Converting to a Normal Form

1. Apply some transformation to G to get rid of

undesirable property 1. Show that the language

generated by G is unchanged.

2. Apply another transformation to G to get rid of

undesirable property 2. Show that the language

generated by G is unchanged and that undesirable

property 1 has not been reintroduced.

3. Continue until the grammar is in the desired form.

Rule Substitution

X → aYc

Y → b

Y → ZZ

We can replace the X rule with the rules:

X → abc

X → aZZc

X ⇒ aYc⇒ aZZc

1/16/2012

17

Rule Substitution

Theorem: Let G contain the rules:

X → αYβ and Y → γ1 | γ2 | … | γn ,

Replace X → αYβ by:

X → αγ1β, X → αγ2β, …, X → αγnβ.

The new grammar G' will be equivalent to G.

Rule Substitution

Replace X → αYβ by:

X → αγ1β, X → αγ2β, …, X → αγnβ.

Proof:

● Every string in L(G) is also in L(G'):

If X → αYβ is not used, then use same derivation.

If it is used, then one derivation is:

S ⇒ … ⇒ δXφ ⇒ δαYβφ ⇒ δαγkβφ ⇒ … ⇒ w

Use this one instead:

S ⇒ … ⇒ δXφ ⇒ δαγkβφ ⇒ … ⇒ w

● Every string in L(G′') is also in L(G): Every new rule

can be simulated by old rules.

1/16/2012

18

Conversion to Chomsky Normal Form

1. Remove all ε-rules, using the algorithm removeEps.

2. Remove all unit productions (rules of the form A → B).

3. Remove all rules whose right hand sides have length

greater than 1 and include a terminal:

(e.g., A → aB or A → BaC)

4. Remove all rules whose right hand sides have length

greater than 2:

(e.g., A → BCDE)

Remove all ε productions:

(1) If there is a rule P → αQβ and Q is nullable,

Then: Add the rule P → αβ.

(2) Delete all rules Q → ε.

Recap: Removing εεεε-Productions

1/16/2012

19

Example:

S → aA

A→ B | CDC

B → ε
B → a

C → BD
D → b

D → ε

Removing εεεε-Productions

Unit Productions

A unit production is a rule whose right-hand side

consists of a single nonterminal symbol.

Example:

S → X Y

X → A
A → B | a

B → b

Y → T
T → Y | c

1/16/2012

20

removeUnits(G) =

1. Let G' = G.

2. Until no unit productions remain in G' do:

2.1 Choose some unit production X → Y.

2.2 Remove it from G'.

2.3 Consider only rules that still remain. For

every rule Y → β, where β ∈ V*, do:

Add to G' the rule X → β unless it is a rule

that has already been removed once.

3. Return G'.

After removing epsilon productions and unit productions,

all rules whose right hand sides have length 1 are in

Chomsky Normal Form.

Removing Unit Productions

removeUnits(G) =
1. Let G' = G.
2. Until no unit productions remain in G' do:

2.1 Choose some unit production X → Y.
2.2 Remove it from G'.
2.3 Consider only rules that still remain. For every rule Y → β,

where β ∈ V*, do:
Add to G' the rule X → β unless it is a rule that has
already been removed once.

3. Return G'.

Removing Unit Productions

Example: S → X Y
X → A
A → B | a
B → b

Y → T
T → Y | c

1/16/2012

21

Mixed Rules

removeMixed(G) =
1. Let G′ = G.
2. Create a new nonterminal Ta for each terminal a in Σ.
3. Modify each rule whose right-hand side has length greater

than 1 and that contains a terminal symbol by substituting
Ta for each occurrence of the terminal a.

4. Add to G, for each Ta, the rule Ta → a.
5. Return G′.

Example:

A → a

A → a B
A → BaC
A → BbC

Long Rules

removeLong(G) =
1. Let G′ = G.
2. For each rule r of the form:

A → N1N2N3N4…Nn, n > 2

create new nonterminals M2, M3, … Mn-1.

3. Replace r with the rule A → N1M2.

4. Add the rules:

M2 → N2M3,
M3 → N3M4, …
Mn-1 → Nn-1Nn.

5. Return G′.

Example:
A → BCDEF

1/16/2012

22

An Example

S → aACa

A → B | a

B → C | c

C → cC | ε

removeEps returns:

S → aACa | aAa | aCa | aa

A → B | a

B → C | c

C → cC | c

An Example

Next we apply removeUnits:
Remove A → B. Add A → C | c.

Remove B → C. Add B → cC (B → c, already there).

Remove A → C. Add A → cC (A → c, already there).

So removeUnits returns:
S → aACa | aAa | aCa | aa

A → a | c | cC

B → c | cC

C → cC | c

S → aACa | aAa | aCa | aa

A → B | a

B → C | c

C → cC | c

1/16/2012

23

An Example

S → aACa | aAa | aCa | aa

A → a | c | cC

B → c | cC

C → cC | c

Next we apply removeMixed, which returns:

S → TaACTa | TaATa | TaCTa | TaTa

A → a | c | TcC

B → c | TcC

C → TcC | c

Ta → a

Tc → c

An Example

S → TaACTa | TaATa | TaCTa | TaTa

A → a | c | TcC

B → c | TcC

C → TcC | c

Ta → a

Tc → c

Finally, we apply removeLong, which returns:

S → TaS1 S → TaS3 S → TaS4 S → TaTa

S1 → AS2 S3 → ATa S4 → CTa

S2 → CTa

A → a | c | TcC

B → c | TcC

C → TcC | c

Ta → a

Tc → c

1/16/2012

24

The Price of Normal Forms

E → E + E
E → (E)
E → id

Converting to Chomsky normal form:

E → E E′
E′ → P E
E → L E′′
E′′ → E R
E → id

L → (
R →)
P → +

Conversion doesn’t change weak generative capacity but it may
change strong generative capacity.

Pushdown Automata

1/16/2012

25

Recognizing Context-Free Languages

Two notions of recognition:

(1) Say yes or no, just like with FSMs

(2) Say yes or no, AND

if yes, describe the structure

a + b * c

Definition of a Pushdown Automaton

M = (K, Σ, Γ, ∆, s, A), where:

K is a finite set of states

Σ is the input alphabet

Γ is the stack alphabet

s ∈ K is the initial state

A ⊆ K is the set of accepting states, and

∆ is the transition relation. It is a finite subset of

(K × (Σ ∪ {ε}) × Γ*) × (K × Γ*)

state input or ε string of state string of

symbols symbols

to pop to push

from top on top

of stack of stack

ΣΣΣΣ and ΓΓΓΓ are not
necessarily disjoint

1/16/2012

26

Definition of a Pushdown Automaton

A configuration of M is an element of K × Σ* × Γ*.

An initial configuration of M is (s, w, ε), where w is

the input string.

Manipulating the Stack

c will be written as cab

a

b

If c1c2…cn is pushed onto the stack:

c1

c2

cn

c

a

b

c1c2…cncab

1/16/2012

27

Yields

Let c be any element of Σ ∪ {ε},

Let γ1, γ2 and γ be any elements of Γ*, and

Let w be any element of Σ*.

Then:

(q1, cw, γ1γ) |-M (q2, w, γ2γ) iff ((q1, c, γ1), (q2, γ2)) ∈ ∆.

Let |-M* be the reflexive, transitive closure of |-M.

C1 yields configuration C2 iff C1 |-M* C2

Computations

A computation by M is a finite sequence of configurations

C0, C1, …, Cn for some n ≥ 0 such that:

●C0 is an initial configuration,

●Cn is of the form (q, ε, γ), for some state q ∈ KM and

some string γ in Γ*, and

●C0 |-M C1 |-M C2 |-M … |-M Cn.

1/16/2012

28

Nondeterminism

If M is in some configuration (q1, s, γ) it is possible that:

● ∆ contains exactly one transition that matches.

● ∆ contains more than one transition that matches.

● ∆ contains no transition that matches.

Accepting

A computation C of M is an accepting computation iff:

● C = (s, w, ε) |-M* (q, ε, ε), and
● q ∈ A.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
● Read all the input and halt in a nonaccepting state,
● Read all the input and halt in an accepting state with the stack not

empty,
● Loop forever and never finish reading the input, or
● Reach a dead end where no more input can be read.

The language accepted by M, denoted L(M), is the set of all strings
accepted by M.

1/16/2012

29

Rejecting

A computation C of M is a rejecting computation iff:

●C = (s, w, ε) |-M* (q, w′, α),

●C is not an accepting computation, and

●M has no moves that it can make from (q, ε, α).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts

nor rejects.

A PDA for Bal

M = (K, Σ, Γ, ∆, s, A), where:
K = {s} the states
Σ = {(,)} the input alphabet
Γ = {(} the stack alphabet
A = {s}
∆ contains:

((s, (, ε), (s, ()) **
((s,), (), (s, ε))

**Important: This does not mean that the stack is empty

1/16/2012

30

A PDA for AnBn = {anbn: n ≥≥≥≥ 0}

M = (K, Σ, Γ, ∆, s, A), where:
K = {s, f} the states
Σ = {a, b, c} the input alphabet
Γ = {a, b} the stack alphabet

A = {f} the accepting states
∆ contains: ((s, a, ε), (s, a))

((s, b, ε), (s, b))
((s, c, ε), (f, ε))
((f, a, a), (f, ε))
((f, b, b), (f, ε))

A PDA for {wcwR: w ∈∈∈∈ {a, b}*}

1/16/2012

31

A PDA for {anb2n: n ≥≥≥≥ 0}

A PDA for PalEven ={wwR: w ∈∈∈∈ {a, b}*}

S → ε
S → aSa

S → bSb

A PDA:

This one is
nondeterministic

1/16/2012

32

A PDA for {w ∈∈∈∈ {a, b}* : #a(w) = #b(w)}

