(¥R
¥4
e T ™ e o e e e O
e
. 2 R NN Te—r L AT AT L r
RN O R SRR & =

BT NOESREER
Bt i SR s Y S

MA/CSSE 474
Theory of Computation

Removing Ambiguity
Chomsky Normal Form
Pushdown Automata

Recap: Ambiguity

A grammar is ambiguous iff there is at least one string

in L(G) for which G produces more than one parse tree.

For many applications of context-free grammars, this is
a problem.

Example: A programming language.

+ If there can be two different structures for a string in
the language, there can be two different meanings.

* Not good!

1/16/2012



s

T A S o) 3 7
RSP NS S e o L
N4 T R e

Pt 0 G Or Sl

An Arithmetic Expression Grammar

E-E+E
E—-ExE
E— (E

E— id

i
E E E E
Vs L
E E E E
| | |
id id id id + id id

2 3 5 2

P

R TERRI 57 e

T A S o) 3 7
RSP NS S e o L
N4 T R e

Inherent Ambiguity

Some CF languages have the property that every
grammar for them is ambiguous. We call such
languages inherently ambiguous.

Example:

L ={a""c™ n, m=0} U {a"w™c™ n, m=0}.

1/16/2012



N A R SPEED
ARSI N R A R R TR e

Inherent Ambiguity

L ={a""c™ n, m=0} U {a"w™c™ n, m=0}.

One grammar for L has the rules:

S->85 1S
S, > SclA /* Generate all strings in {a™o"c™}.
A— aAb|e
S,—>aS,| B /* Generate all strings in {a"o™c™M}.
B — bBc | €

Consider any string of the form a"o"c".

It turns out that L is inherently ambiguous.

P

. I_‘-‘..—;.l :\‘-‘:\_;-.v“'" SRR SPEED
AR TN IR G TERRY

Inherent Ambiguity

Both of the following problems are undecidable:
* Given a context-free grammar G, is G ambiguous?

* Given a context-free language L, is L inherently
ambiguous?

1/16/2012



P

B —
ARSI N R A AR R TR e

But We Can Often Reduce Ambiguity

We can get rid of:
e some € rules like S — €,
e rules with symmetric right-hand sides, e.g.,

S$—-SS
E—-E+E

e rule sets that lead to ambiguous attachment of
optional postfixes.

P

e e T T
e T 0 & SR

A Highly Ambiguous Grammar

S— e
S— SS
S— (9
S S
5/\5 S/\\S
( S ) ( S )y S S ( ~|5 )
" . AN .
s ¢ e (5) '
| ($)

1/16/2012



1/16/2012

I
-

Resolving the Ambiguity with a
Different Grammar

The biggest problem is the € rule.

A different grammar for the language of balanced

parentheses:
We'd like to have an
S ¢ algorithm for removing all e-
S S productions...
S_ §s --- except for the case where
S>(§ € is actually in the
S—() language;

then we introduce a new
start symbol and have one
e-production whose left side
is that symbol.

Nullable Nonterminals

Examples:

S_s aTa |Anonterminal Xis nullable iff

T e either:
(1) there isarule X — ¢, or
(2) there is a rule X —» PQR...

S aTa and P, Q R, ...

T SAB are all nullable.

A-ce

B-e




Nullable Nonterminals

A nonterminal X is nullable iff either:
(1) there isarule X — ¢, or
(2) thereisarule X— PQR...and P, Q, R, ...
are all nullable.

So compute N, the set of nullable nonterminals, as follows:

1. Set Nto the set of nonterminals that satisfy (1).
2. Repeat until an entire pass is made without adding
anythingto N

Evaluate all other nonterminals with respect to (2).

If any nonterminal satisfies (2) and is not in N, insert it.

A General Technique for Getting Rid of e-Rules

Definition: a rule is modifiable iff it is of the form:
P — aQp, for some nullable Q.

removeEps(G: cfg) =

1.Let G’ = G.
2. Find the set N of nullable nonterminals in G'.
3. Repeat until G’ contains no modifiable rules that
haven’t been processed:

Given the rule P — aQp, where Q e N,

add the rule P — of

if it is not already present and if a3 # € and if P = o.
4. Delete from G’ all rules of the form X — €.
5. Return G'.

L(G) = L(G) - {¢}

1/16/2012



1/16/2012

An Example
G={{S, TA B C,a,b,c},{a,b,c}, R S),
R= { S—>aTa
T— ABC
A—-aA|C
B—-Bo|C
N | C—ocle}
™ & removeEps(G: cfg) =
B S 1.Let G’ = G.
2. Find the set N of nullable nonterminals in G'.
3 3. Repeat until G’ contains no modifiable rules that
b haven’t been processed:
¥ Y Giventhe rule P — aQB, where Qe N,
‘ add the rule P — of
if it is not already present and if af # ¢
and if P+ a.
4. Delete from G all rules of the form X — e.
5. Return G".
< What lf e e L?

atmostoneEps(G: cfg) =
1. G” = removeEps(Q).
2. If Sz is nullable then [*i.e.,ee L(G)
2.1 Create in G” a new start symbol S*.
2.2 Add to Ry the two rules:
S*—>e¢
S*— S

=
F

723

3. Return G”.

A A Y S o 2
i oV Ve PR ARy o &
N4 A R 8 e M




PR

But There is Still Ambiguity

s S e What about ()()() ?
B S-S
, S 8
B S— (9
E S—)
g §
| |
s §
S/\g 9/\5

T A S o) 3 7
o r b e B o .
s ‘2:‘4: § "'. o ¥ %

i

Eliminating Symmetric Recursive Rules

5 S —>e

S S*—=S
*_ S— SS
B S—(S)

o S ()

Replace S — SSwith one of:
S — SS; /* force branching to the left
: S— 5;S /* force branching to the right
1 So we get:

S >¢ S— S§S;

S-S S— 5
Si—(5)
Si— ()

1/16/2012



5 . ,.»‘_E-':.l :‘-‘-‘:\'t‘:;?-' ‘.- o T EPEED
ARSI AT T TFRRY

Eliminating Symmetric Recursive Rules

So we get:
S —>e
S-S
S— SS;
S-S5
S —(S)
Si— ()

AS !
$ s,

S

S

PN

S

Arithmetic Expressions

E-E+E
E—-E+E

E— (E
E—id}

Problem 1: Associativity

E

N

m
——m

g——m

o m

1/16/2012



B TPRRY e

B e R Tt e b et b 1
AT G L
;Ml‘:4= £ & ':.' 2

¥ PR

Arithmetic Expressions

E-E+E
E—-E+E

E— (E)
E—id}

Problem 2: Precedence

E E

\E

E E E E

]

id & id + id id = id + id

BRI TPRR Lo P S

B e R Tt e b et b 1
AT G L
Saber & ke

Arithmetic Expressions - A Better Way

E-E+T

E—-T

T>T*F

T—>F E

F— (E)
F—id

M

2

id

~
a— -~

i id

+

1/16/2012

10



Ambiguous Attachment

The dangling else problem:

<stmt> ::= i f <cond> then <stmt>
<stmt> ::= 1 f <cond> then <stmt> else <stmt>
Consider:

if cond, then if cond, then st; else st,

The Java Fix

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
<lfThenElseStatementNoShortlf>

<StatementNoShortlf> ::= <block> |

<lfThenElseStatementNoShortlf> | ...
<IfThenStatement> ::= i f ( <Expression>) <Statement>
<IfThenElseStatement> ::= 1 £ ( <Expression>)

<StatementNoShortlf> e1se <Statement>

<IfThenElseStatementNoShortlf> ::=

if ( <Expression> ) <StatementNoShortlf>

else <StatementNoShortlf>

<Statement>

<IfThenElseStatement>

T

if  (cond) <StatementNoShortlf>  else  <Statement>

1/16/2012

11



Going Too Far

S— NP VP

NP — the Nominal | Nominal | ProperNoun | NP PP

Nominal — N| Adjs N

N — cat | girl |dogs|ball | chocolate |
bat

ProperNoun — Chris | Fluffy

Adjs — Adj Adjs | Adj

Adj — young | older | smart

VP— V| VNP| VP PP

V— like | likes | thinks |hits

PP — Prep NP

Prep — with

e Chris likes the girl with the cat.

e Chris shot the bear with a rifle.

Going Too Far

e Chris likes the girl with the cat.

e Chris shot the bear with a rifle.

e Chris shot the bear with a rifle.

1/16/2012

12



Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

e regular exprs.
or

e regular grammars e context-free grammars
e recognize e parse

Normal Forms

A normal form Ffor a set C of data objects is a form, i.e.,
a set of syntactically valid objects, with the following two
properties:

« For every element c of C, except possibly a finite set of
special cases, there exists some element fof F such

that fis equivalent to ¢ with respect to some set of
tasks.

e Fis simpler than the original form in which the elements
of C are written. By “simpler” we mean that at least
some tasks are easier to perform on elements of Fthan
they would be on elements of C.

1/16/2012

13



Normal Forms

If you want to design algorithms, it is often useful to have a limited
number of input forms that you have to deal with.

Normal forms are designed to do just that. Various ones have been
developed for various purposes.

Examples:

¢ Disjunctive normal form for database queries so that they can be
entered in a query-by-example grid.

e Jordan normal form for a square matrix, in which the matrix is
almost diagonal in the sense that its only non-zero entries lie on the
diagonal and the superdiagonal.

e Various normal forms for grammars to support specific parsing
techniques.

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the
following two forms:

e X— a,whereae X, or
e X — BC, where Band C are elements of V- X.

Advantages:

e Parsers can use binary trees.
e Exact length of derivations is known:

A/S \ B
\A B/

\B
| o B/

|
b

\B
|

1/16/2012

14



1/16/2012

Tl ATy

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the
following form:

e X— aP,whereae XandPBe (V-X)~
Advantages:

« Every derivation of a string s contains |s| rule
applications.

e Greibach normal form grammars can easily be
converted to pushdown automata with no ¢-
transitions. This is useful because such PDAs are
guaranteed to halt.

. I_‘-‘..—;.l N TR R L
P T RS S SR

Normal Forms Exist

Theorem: Given a CFG G, there exists an equivalent
Chomsky normal form grammar G such that:

Yl

N A R SPEED
ARSI A R SR SRR e e

Details of both are
L(G) = L(G) —{e}. complex but
straightforward; | leave
Proof: The proof is by construction. | them for you to read in
the textbook and/or in
the next 16 slides.

Theorem: Given a CFG G, there exists an equivalent
Greibach normal form grammar Gg such that:

L(Gg) = L(G) —{¢}.

Proof: The proof is also by construction.

15



Converting to a Normal Form

1. Apply some transformation to G to get rid of
undesirable property 1. Show that the language
generated by G is unchanged.

2. Apply another transformation to G to get rid of
undesirable property 2. Show that the language
generated by G is unchanged and that undesirable
property 1 has not been reintroduced.

3. Continue until the grammar is in the desired form.

Rule Substitution

X—aYc
Y>Db
Y > ZZ

We can replace the Xrule with the rules:

X = abc
X — aZZc

X=>a¥Yec = aZlc
\ )

1/16/2012

16



Rule Substitution

Theorem: Let G contain the rules:

X—>aYp and Yoy Y|V,
Replace X — a Yp by:

X->ayuB, X-oapp, ..., X-oayp.

The new grammar G’ will be equivalentto G.

Rule Substitution

Replace X — aYP by:
X->ayuB, X-oapb, ..., X->oyp.

Proof:
e Every string in L(G) is also in L(G'):

If X — aYB is not used, then use same derivation.
If it is used, then one derivation is:
S= .. =2p=0aYBs=daypo= ... > w

Use this one instead:
S=..=2Xp=> doy o= ...=w

e Every string in L(G”) is also in L(G): Every new rule
can be simulated by old rules.

1/16/2012

17



Conversion to Chomsky Normal Form

1. Remove all e-rules, using the algorithm removeEps.

2. Remove all unit productions (rules of the form A — B).

3. Remove all rules whose right hand sides have length
greater than 1 and include a terminal:

(e.9.,A— aBorA— Ba(C)

4. Remove all rules whose right hand sides have length
greater than 2:

(e.g., A— BCDE)

Recap: Removing e-Productions
Remove all € productions:
(1) If there is a rule P — a@B and Q is nullable,

Then: Add the rule P — ap.

(2) Delete all rules Q — e.

1/16/2012

18



Removing e-Productions

Example:

S— aA
A— B| CDC
B—e
B—a

C—- BD
D—b

D—¢

T AT S 3
ake AV T o Y
P B AP

-,

Unit Productions

A unit productionis a rule whose right-hand side
consists of a single nonterminal symbol.

Example:

S—-> XY
X—A
A—>B|a
B—b
YT
T—>Y]|c

1/16/2012

19



Removing Unit Productions

removeUnits(G) =
1. Let G'= G.
2. Until no unit productions remain in G'do:

2.1 Choose some unit production X — Y.

2.2 Remove it from G"

2.3 Consider only rules that still remain. For

every rule Y — [, where f € V*, do:
Add to G'the rule X — B unlessitis a rule

that has already been removed once.
3. Return G".

After removing epsilon productions and unit productions,
all rules whose right hand sides have length 1 are in
Chomsky Normal Form.

Removing Unit Productions

removeUnits(G) =
1. Let G'=G.
2. Until no unit productions remain in G'do:
2.1 Choose some unit production X — Y.
2.2 Remove it from G
2.3 Consider only rules that still remain. For everyrule Y — B,
where B e V¥, do:
Add to G'the rule X — B unless itis a rule that has
already been removed once.
3. Return G

Example: S—> XY
X—>A
A—-Bla
B-b
YT
T->Y]|c

1/16/2012

20



P T RS S SR

Mixed Rules

removeMixed(G) =

1. LetG’= G.

2. Create a new nonterminal T, for each terminal a in X.

3. Modify each rule whose right-hand side has length greater
than 1 and that contains a terminal symbol by substituting
T, for each occurrence of the terminal a.

4. Add to G, foreach T, therule T, — a.

5. Return G~

Example:

A= a

A—aB
A— BaC
A— BoC

PR

ARSI TR R T R SRR TR e e

Long Rules

removelLong(G) =
1. Let G’= G.
2. For each rule r of the form:

A= NiN,N;N,...N,, n>2
create new nonterminals M,, M, ... M, ;.
3. Replace rwith the rule A — N, M,.
4. Add the rules:
M, - N,Ms;,
Ms — NaM,, ...
Mn—1 - Nn—1Nn-
5. Return G~

Example:
A — BCDEF

1/16/2012

21



1/16/2012

An Example
o S— aACa

o . A—B]la

-: B-C|c
R CocCle

removeEps returns:

S — aACa | aAa|aCalaa
A—>B|a
B> Cj|c
C—-cCl|c

N - AR £33, =
e 2l AT T o Y
N4 T R e

An Example
S —> aACa|aAa|alCalaa
o A—B|a

;_ B—C|c

;*: C—>cCl|c

® & Next we apply removeUnits:

%% Remove A—» B. AddA— C|c.

. &4 Remove B— C. Add B — cC (B — c, already there).
& Remove A— C. Add A — cC (A — c, already there).

& So removeUnits returns:

' S — aACa | aAa|aCalaa
A— al|c|cC

B—c|cC

C—-cCl|c

T A Y
RS RS 2 T v

22



1/16/2012

An Example
o S — aACa | aAa|aCalaa
i A— alc|cC

5 3 B—cl|cC

B C—cClc

Next we apply removeMixed, which returns:

.. :;‘,‘. S— TaACTa | TaATa | TaCTa | TaTa
A—- alc|T.C
2B B->c|T.C
IS C—->T.Cl|c
el T,—>a
T.>c
An Example
S S—- T,ACT, | TAT, | T,CT, | T,T,
i A—- alc|T.C
g :3 B->c|T.C
B C->T.Cl|c
P T,—a
T.>c
::,,_ Finally, we apply removelLong, which returns:
Wg S—>T,S, S->TS S—>T,S, S>> T,T,
v R S, >AS, S;-5AT, S,—-CT,
I8 S,—>CT,
8 A-> a|c|T,C
B->c|T.C
C—->T.Cl|c
T,—a
T.>c

23



1/16/2012

The Price of Normal Forms

E>E+E
E—(E)

E— id
Converting to Chomsky normal form:

E—-EF
E—-PE
E—-LFE’
E'—-ER
E— id
L —(
R —)
P -+

Conversion doesn’t change weak generative capacity but it may
change strong generative capacity.

Pushdown Automata

24



- Recognizing Context-Free Languages
2 Two notions of recognition:
(1) Say yes or no, just like with FSMs
(2) Say yes or no, AND
if yes, describe the structure

Definition of a Pushdown Automaton

M= (K, %, T, A, s, A), where:
Kis a finite set of states
Y isthe input alphabet |3 and 1 are not
I" is the stack alphabet | necessarily disjoint
s € Kis the initial state
A c Kiis the set of accepting states, and
A is the transition relation. It is a finite subset of

W PR

(K x (Eufe) x T x (K x I

state  inputore stringof state string of

symbols symbols
to pop to push
from top on top
of stack of stack

1/16/2012

25



1/16/2012

Definition of a Pushdown Automaton

A configuration of Mis an element of Kx £* x I'™.

An initial configuration of Mis (s, w, €), where w is
the input string.

P

Manipulating the Stack

c | will be written as cab

ey SR
LRI 5 955 % 57
o

If ¢;c,...c,is pushed onto the stack:

‘Umo:o o0

CCo...Chcab

26



1/16/2012

P

Yields

Let c be any element of £ U {€},
Let y,, v, and y be any elements of I'*, and
Let wbe any element of X*.

B TBRRI 75 e

Then:
(91, W, V1Y) I-m (Gos W, VoY) i (G, € 14), (Qs Y2)) € A

Let |-,,* be the reflexive, transitive closure of |-,

C, yields configuration G, iff C, |-\,* C,

N - AR o 3
e 2l AT T o Y
N4 T R e

P

Computations

A computation by Mis a finite sequence of configurations
Co, Cy, ..., C, for some n =0 such that:

e C, is an initial configuration,

e C,is of the form (q, €, v), for some state ge K, and
some string yin I'*, and

hd Co v Cilrm Colpgeee I G

PRI e s

T AT £ 3
N AR ST S .
T T B P T

27



Nondeterminism

If Mis in some configuration (qg;, s, v) it is possible that:
¢ A contains exactly one transition that matches.
« A contains more than one transition that matches.

¢ A contains no transition that matches.

Accepting
A computation C of Mis an accepting computation iff:

e C=(s,w¢€) |- (g ¢, ¢),and
e ge A.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
e Read all the input and halt in a nonaccepting state,
e Read all the input and halt in an accepting state with the stack not
empty,
e Loop forever and never finish reading the input, or
e Reach a dead end where no more input can be read.

The language accepted by M, denoted L(M), is the set of all strings
accepted by M.

1/16/2012

28



AT

PRI

e RPN .&m

Rejecting
A computation C of M is a rejecting computation iff:
e C=(s,w,¢) |-y (q W) ),
e Cis not an accepting computation, and

o M has no moves that it can make from (g, €, ).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts

nor rejects.

i

5 . _"_""';'- :»;-‘:\_‘;-.v"' 3SR SPEED
AR TN IR G TERRY

A PDA for Bal

O
(/e

M= (K, X, T, A, s, A), where:

K={s} the states
Z={()} the input alphabet
r'={(} the stack alphabet
A={s}

A contains:

((s, (g, (s () ™
((s,), (). (s, 8)

**Important: This does not mean that the stack is empty

1/16/2012

29



4=

A PDA for A"B" = {a™": n > 0}

a/e/a

b/a/e
b/a/e .

e ©

A PDA for {wewR: w e {a, b}*}

a/e/a

b/e/b

a/a/e
c/efe ’
b/b/e

M= (K, %, T, A, s, A), where:

K={s f}
¥ ={a, b, c}
I'={a, b}
A={f}

A contains:

the states

the input alphabet
the stack alphabet
the accepting states

, (s, a))

1/16/2012

30



A PDA for {a"b?": n > 0}

a/e/aa b/a/e
@ b/a/e ‘_‘

A PDA for PalEven ={ww”: w e {a, b}*}

S—e : '
S— aSa This one is
S > bSh nondeterministic
A PDA:
a/e/a a/a/e '
s/s/s

b/s/b b/b/e .

1/16/2012

31



© APDAfor {we {a, b}* : #,(w) = #,(w)}

S e o L watat
TR PR R

1/16/2012

32



