

What about Compilers Course?

- Is it like this one?

What's it about?
What will we do?
What is the grade based on?

Recap: Context-Free Grammars

A context-free grammar (a.k.a. CFG) G is a quadruple, (V, Σ, R, S), where:

- V is the rule alphabet (vocabulary), which contains nonterminals and terminals.
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V-\Sigma) \times V^{*}$,
- S (the start symbol) is an element of $V-\Sigma$.

Example:

$(\{S, \mathrm{a}, \mathrm{b}\}, \quad\{\mathrm{a}, \mathrm{b}\}, \quad\{S \rightarrow \mathrm{a} S \mathrm{~b}, S \rightarrow \varepsilon\}, S)$

Rules are also called productions.

Note: Some authors say that a CFG is (N, Σ, R, S), where N is the set of nonterminal symbols. In that case $\mathrm{V}=\mathrm{N} \cup \Sigma$. I may sometimes use N in this way. $\mathrm{N}=\mathrm{V}-\Sigma$.

Simplifying Context-Free Grammars

Remove non-productive and unreachable non-terminals.

Unproductive Nonterminals

removeunproductive(G : CFG) $=$

1. $G^{\prime}=G$.
2. Mark every nonterminal symbol in G^{\prime} as unproductive.
3. Mark every terminal symbol in G^{\prime} as productive.
4. Until one entire pass has been made without any new symbol being marked do:

For each rule $X \rightarrow \alpha$ in R do:
If every symbol in α has been marked as productive and X has not yet been marked as productive then:

Mark X as productive.
5. Remove from G^{\prime} every unproductive symbol.
6. Remove from G^{\prime} every rule that contains an unproductive symbol.
7. Return G^{\prime}.

Unreachable Nonterminals

removeunreachable(G: CFG) =

1. $G^{\prime}=G$.
2. Mark S as reachable.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new symbol being marked do:
For each rule $X \rightarrow \alpha A \beta$ (where $A \in V-\Sigma$) in R do:
If X has been marked as reachable and A has not then:
Mark A as reachable.
5. Remove from G^{\prime} every unreachable symbol.
6. Remove from G^{\prime} every rule with an unreachable symbol on the left-hand side.
7. Return G^{\prime}.

Proving the Correctness of a Grammar

$A^{n} B^{n}=\left\{a^{n} b^{n}: n \geq 0\right\}$
$G=(\{S, \mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, R, S)$,
$R=\{S \rightarrow \mathrm{a} S \mathrm{~b}$
$S \rightarrow \varepsilon$
\}

- Prove that G generates only strings in L.
- Prove that G generates all the strings in L.

Structure

Context free languages:
We care about structure.

Derivations

To capture structure, we must capture the path we took through the grammar. Derivations do that.

Example:

$$
\begin{aligned}
& S \rightarrow \varepsilon \\
& S \rightarrow S S \\
& S \rightarrow(S)
\end{aligned}
$$

$$
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5
\end{array}
$$

But the order of rule application doesn't matter.

Derivations

Parse trees capture essential structure:

$$
\begin{aligned}
& \begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array} \\
& S \Rightarrow S S \Rightarrow(S) S \Rightarrow((S)) S \Rightarrow(()) S \Rightarrow(())(S) \Rightarrow(())() \\
& \underset{1}{\Rightarrow} S S \underset{2}{\Rightarrow}(S) S \underset{3}{\Rightarrow}((S)) S \underset{4}{\Rightarrow}((S))(S) \underset{6}{\Rightarrow}(())(S) \underset{6}{\Rightarrow}(())()
\end{aligned}
$$

Parse Trees

A parse tree, derived from a grammar $G=(V, \Sigma, R, S)$, is a rooted, ordered tree in which:

- Every leaf node is labeled with an element of $\Sigma \cup\{\varepsilon\}$,
- The root node is labeled S,
- Every other node is labeled with some element of:

$$
V-\Sigma \text {, and }
$$

- If m is a non-leaf node labeled X and the (ordered) children of m are labeled $x_{1}, x_{2}, \ldots, x_{n}$, then R contains the rule

$$
X \rightarrow x_{1} x_{2}, \ldots x_{n}
$$

Generative Capacity

Because parse trees matter, it makes sense, given a grammar G, to distinguish between:

- G's weak generative capacity, defined to be the set of strings, $L(G)$, that G generates, and
- G's strong generative capacity, defined to be the set of parse trees that G generates.

Algorithms Care How We Search

Algorithms for generation and recognition must be systematic. They typically use either the leftmost derivation or the rightmost derivation.

Derivations of The Smart Cat

- A left-most derivation is:
$S \Rightarrow N P V P \Rightarrow$ the Nominal $V P \Rightarrow$ the Adjs $N V P \Rightarrow$ the $\operatorname{Adj} N V P \Rightarrow$ the smart $N V P \Rightarrow$ the smart cat $V P \Rightarrow$ the smart cat $V N P \Rightarrow$ the smart cat smells $N P \Rightarrow$ the smart cat smells Nominal \Rightarrow the smart cat smells $N \Rightarrow$ the smart cat smells chocolate
- A right-most derivation is:
$S \Rightarrow N P V P \Rightarrow N P \vee N P \Rightarrow N P \vee$ Nominal $\Rightarrow N P \vee N \Rightarrow$ $N P V$ chocolate $\Rightarrow N P$ smells chocolate \Rightarrow the Nominal smells chocolate \Rightarrow the Adjs N smells chocolate \Rightarrow the Adjs cat smells chocolate \Rightarrow the Adj cat smells chocolate \Rightarrow the smart cat smells chocolate

Ambiguity

A grammar is ambiguous iff there is at least one string in $L(G)$ for which G produces more than one parse tree.

For many applications of context-free grammars, this is a problem.

Example: A programming language.

- If there can be two different structures for a string in the language, there can be two different meanings.
- Not good!

An Arithmetic Expression Grammar

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }
\end{aligned}
$$

Inherent Ambiguity

Some CF languages have the property that every grammar for them is ambiguous. We call such languages inherently ambiguous.

Example:
$L=\left\{a^{n} b^{n} C^{m}: n, m \geq 0\right\} \cup\left\{a^{n^{m}} b^{m} C^{m}: n, m \geq 0\right\}$.

Inherent Ambiguity

$L=\left\{a^{n} b^{n} C^{m}: n, m \geq 0\right\} \cup\left\{a^{n} b^{m} C^{m}: n, m \geq 0\right\}$.
One grammar for L has the rules:
$S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow S_{1} \mathrm{C} \mid A \quad / *$ Generate all strings in $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{C}^{m}\right\}$.
$A \rightarrow \mathrm{a} A \mathrm{~b} \mid \varepsilon$
$S_{2} \rightarrow a S_{2} \mid B \quad / *$ Generate all strings in $\left\{a^{m_{b}} b^{m} C^{m}\right\}$.
$B \rightarrow \mathrm{~b} B_{\mathrm{c}} \mid \varepsilon$

Consider any string of the form $a^{n} b^{n} C^{n}$.
It turns out that L is inherently ambiguous.

路符
 Inherent Ambiguity

Both of the following problems are undecidable:

- Given a context-free grammar G, is G ambiguous?
- Given a context-free language L, is L inherently ambiguous?

But We Can Often Reduce Ambiguity

We can get rid of:

- some ε rules like $S \rightarrow \varepsilon$,
- rules with symmetric right-hand sides, e.g.,
$S \rightarrow S S$
$E \rightarrow E+E$
- rule sets that lead to ambiguous attachment of optional postfixes.

A Highly Ambiguous Grammar

$S \rightarrow \varepsilon$
$S \rightarrow S S$
$S \rightarrow(S)$

Resolving the Ambiguity with a Different Grammar

The biggest problem is the ε rule.
A different grammar for the language of balanced parentheses:

$$
\begin{aligned}
& S^{\star} \rightarrow \varepsilon \\
& S^{\star} \rightarrow S \\
& S \rightarrow S S \\
& S \rightarrow(S) \\
& S \rightarrow()
\end{aligned}
$$

Nullable Nonterminals

Examples:

$$
\begin{aligned}
& S \rightarrow \mathrm{a} \mathrm{a}^{2} \\
& T \rightarrow \varepsilon \\
& \\
& S \rightarrow \mathrm{a} T_{\mathrm{a}} \\
& T \rightarrow A B \\
& A \rightarrow \varepsilon \\
& B \rightarrow \varepsilon
\end{aligned}
$$

A nonterminal X is nullable iff either:
(1) there is a rule $X \rightarrow \varepsilon$, or
(2) there is a rule $X \rightarrow P Q R \ldots$ and P, Q, R, \ldots are all nullable.

Nullable Nonterminals

A nonterminal X is nullable iff either:
(1) there is a rule $X \rightarrow \varepsilon$, or
(2) there is a rule $X \rightarrow P Q R \ldots$ and P, Q, R, \ldots are all nullable.

So compute N, the set of nullable nonterminals, as follows:

1. Set N to the set of nonterminals that satisfy (1).
2. Repeat until an entire pass is made without adding anything to N

Evaluate all other nonterminals with respect to (2).
If any nonterminal satisfies (2) and is not in N, insert it.

3
 A General Technique for Getting Rid of ε-Rules

Definition: a rule is modifiable iff it is of the form:
$P \rightarrow \alpha Q \beta$, for some nullable Q.
removeEps(G: cfg) =

1. Let $G^{\prime}=G$.
2. Find the set N of nullable nonterminals in G^{\prime}.
3. Repeat until G^{\prime} contains no modifiable rules that haven't been processed:

Given the rule $P \rightarrow \alpha Q \beta$, where $Q \in N$, add the rule $P \rightarrow \alpha \beta$
if it is not already present and if $\alpha \beta \neq \varepsilon$ and if $P \neq \alpha \beta$.
4. Delete from G^{\prime} all rules of the form $X \rightarrow \varepsilon$.
5. Return G^{\prime}.
$L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$

An Example

$$
\begin{aligned}
G=\{\{S, & T, A, B, C, \mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, R, S), \\
R=\{ & S \rightarrow \mathrm{a} \mathrm{a} \\
& T \rightarrow A B C \\
A & \rightarrow a A \mid C \\
B & \rightarrow B \mid C \\
C & \rightarrow \mathrm{c} \mid \varepsilon\}
\end{aligned}
$$

removeEps(G: cfg) =

1. Let $G^{\prime}=G$.
2. Find the set N of nullable nonterminals in G^{\prime}.
3. Repeat until G^{\prime} contains no modifiable rules that haven't been processed:
Given the rule $P \rightarrow \alpha Q \beta$, where $Q \in N$, add the rule $P \rightarrow \alpha \beta$
if it is not already present and if $\alpha \beta \neq \varepsilon$ and if $P \neq \alpha \beta$.
4. Delete from G^{\prime} all rules of the form $X \rightarrow \varepsilon$.
5. Return G^{\prime}

What lf $\varepsilon \in L$?

atmostoneEps(G: cfg) =

1. $G^{\prime \prime}=$ removeEps(G).
2. If S_{G} is nullable then $\quad / *$ i. e., $\varepsilon \in L(G)$
2.1 Create in $G^{\prime \prime}$ a new start symbol S^{\star}.
2.2 Add to $R_{G^{\prime \prime}}$ the two rules:

$$
\begin{aligned}
& S^{*} \rightarrow \varepsilon \\
& S^{*} \rightarrow S_{G} .
\end{aligned}
$$

3. Return $G^{\prime \prime}$.

But There is Still Ambiguity

$$
\begin{array}{ll}
S^{\star} \rightarrow \varepsilon & \text { What about }()()() ? \\
S^{\star} \rightarrow S & \\
S \rightarrow S S & \\
S \rightarrow(S) & \\
S \rightarrow() &
\end{array}
$$

Eliminating Symmetric Recursive Rules

$$
\begin{aligned}
& S^{*} \rightarrow \varepsilon \\
& S^{*} \rightarrow S \\
& S \rightarrow S S \\
& S \rightarrow(S) \\
& S \rightarrow()
\end{aligned}
$$

Replace $S \rightarrow S S$ with one of:
$S \rightarrow S S_{1}$
$S \rightarrow S_{1} S$
/* force branching to the left

So we get:

$$
\begin{array}{ll}
S^{*} \rightarrow \varepsilon & S \rightarrow S S_{1} \\
S^{*} \rightarrow S & S \rightarrow S_{1} \\
& S_{1} \rightarrow(S) \\
& S_{1} \rightarrow()
\end{array}
$$

Eliminating Symmetric Recursive Rules

```
So we get:
    S*}->
    S*}->
    S->SS1
    S->S
    S}->(S
    S}->(
```


Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }\}
\end{aligned}
$$

Problem 1: Associativity

Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }\}
\end{aligned}
$$

Problem 2: Precedence

Arithmetic Expressions - A Better Way

$$
\begin{aligned}
& E \rightarrow E+T \\
& E \rightarrow T \\
& T \rightarrow T^{\star} F \\
& T \rightarrow F \\
& F \rightarrow(E) \\
& F \rightarrow i d
\end{aligned}
$$

Ambiguous Attachment

The dangling else problem:
<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:
if cond ${ }_{1}$ then if cond then $^{\text {it }}{ }_{1}$ elsest ${ }_{2}$

Going Too Far

$S \rightarrow N P V P$
$N P \rightarrow$ the Nominal | Nominal | ProperNoun | NP PP
Nominal $\rightarrow N \mid$ Adjs N
$N \rightarrow$ cat | girl|dogs| ball| chocolate| bat
ProperNoun \rightarrow Chris |Fluffy
Adjs \rightarrow Adj Adjs | Adj
Adj \rightarrow young | older | smart
$V P \rightarrow V|V N P| V P P P$
$V \rightarrow$ like|likes|thinks|hits
$P P \rightarrow$ Prep NP
Prep \rightarrow with

- Chris likes the girl with the cat.
- Chris shot the bear with a rifle.

Comparing Regular and Context-Free Languages
 Regular Languages
 - regular exprs.
 or
 - regular grammars - context-free grammars
 - recognize
 Context-Free Languages
 - parse

