
1/13/2012

1

CFG Simplification, Correctness,  

Structure, and Ambiguity

MA/CSSE 474
Theory of Computation

What about Compilers Course?

• Is it like this one?

• What's it about?

• What will we do?

• What is the grade based on?



1/13/2012

2

Recap: Context-Free Grammars
A context-free grammar (a.k.a. CFG) G is a quadruple,

(V, Σ, R, S), where:

● V is the rule alphabet (vocabulary), which contains 

nonterminals  and terminals.

● Σ (the set of terminals) is a subset of V,

● R (the set of rules) is a finite subset of (V - Σ) ×V*, 

● S (the start symbol) is an element of V - Σ.

Example:

({S, a, b},  {a, b},   {S →aSb,  S → ε},  S)

Note: Some authors say that a CFG  is (N, Σ, R, S), 

where N is the set of nonterminal symbols. In that case 

V=N∪ Σ.  I may sometimes use N in this way.  N = V - Σ.

Rules are 
also called 
productions.

Simplifying Context-Free Grammars

Remove non-productive and unreachable non-terminals.



1/13/2012

3

Unproductive Nonterminals

removeunproductive(G: CFG) = 
1. G′ = G. 
2. Mark every nonterminal symbol in G′ as unproductive.
3. Mark every terminal symbol in G′ as productive.
4. Until one entire pass has been made without any new 

symbol being marked do:
For each rule X → α in R do:

If every symbol in α has been marked as 
productive and X has not yet been marked as 
productive then:

Mark X as productive.
5. Remove from G′ every unproductive symbol.
6. Remove from G′ every rule that contains an 

unproductive symbol. 
7. Return G′.

Unreachable Nonterminals

removeunreachable(G: CFG) = 
1. G′ = G.
2. Mark S as reachable.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new 

symbol being marked do:
For each rule X → αAβ (where A ∈ V - Σ) in R do:

If X has been marked as reachable and A has not then:
Mark A as reachable.

5. Remove from G′ every unreachable symbol.
6. Remove from G′ every rule with an unreachable symbol on 

the left-hand side. 
7. Return G′.



1/13/2012

4

Proving the Correctness of a Grammar

AnBn = {anbn : n ≥ 0}

G = ({S, a, b}, {a, b}, R, S),

R = {  S → a S b

S → ε
}

● Prove that G generates only strings in L.

● Prove that G generates all the strings in L.

Context free languages:

We care about structure.

E

E + E

id E    *    E

3 id id

5 7

Structure



1/13/2012

5

To capture structure, we must capture the path we took 

through the grammar.  Derivations do that.

Example:

S → ε
S → SS

S → (S)

1        2           3             4               5              6

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ ((S))(S) ⇒ (())(S) ⇒ (())()

1        2           3             5                4              6

But the order of rule application doesn’t matter.

Derivations

Parse trees capture essential structure:

1        2           3             4               5             6

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ ((S))(S) ⇒ (())(S) ⇒ (())()

1        2           3             5                4              6

S

S S

(      S      )  (      S      )

(   S   )             ε

ε

Derivations



1/13/2012

6

Parse Trees

A parse tree, derived from a grammar G = (V, Σ, R, S), 

is a rooted, ordered tree in which:

● Every leaf node is labeled with an element of Σ ∪ {ε},

● The root node is labeled S, 

● Every other node is labeled with some element of:

V – Σ, and

● If m is a non-leaf node labeled X and the (ordered) 

children of m are labeled x1, x2, …, xn, then R contains 

the rule  

X → x1 x2, … xn.

S

NP VP

Nominal V NP

Adjs N Nominal

Adj N

the smart cat                    smells           chocolate

Structure in English



1/13/2012

7

Generative Capacity

Because parse trees matter, it makes sense, given a 

grammar G, to distinguish between:

●G’s weak generative capacity, defined to be the 

set of strings, L(G), that G generates, and

●G’s strong generative capacity, defined to be the 

set of parse trees that G generates.

Algorithms Care How We Search

Algorithms for generation and recognition must be 

systematic.  They typically use either the leftmost 
derivation or the rightmost derivation.

S

S S

( S ) ( S )

( S    ) ε

ε



1/13/2012

8

Derivations of The Smart Cat

• A left-most derivation is:
S ⇒ NP VP ⇒ the Nominal VP ⇒ the Adjs N VP ⇒

the Adj N VP ⇒ the smart N VP ⇒ the smart cat VP ⇒

the smart cat V NP ⇒ the smart cat smells NP ⇒

the smart cat smells Nominal ⇒ the smart cat smells N ⇒

the smart cat smells chocolate 

• A right-most derivation is:
S ⇒ NP VP ⇒ NP V NP ⇒ NP V Nominal ⇒ NP V N ⇒

NP V chocolate ⇒ NP smells chocolate ⇒
the Nominal smells chocolate ⇒
the Adjs N smells chocolate ⇒
the Adjs cat smells chocolate ⇒
the Adj cat smells chocolate ⇒
the smart cat smells chocolate

Ambiguity

A grammar is ambiguous iff there is at least one string 

in L(G) for which G produces more than one parse tree.

For many applications of context-free grammars, this is 

a problem.  

Example: A programming language.  

• If there can be two different structures for a string in 

the language, there can be two different meanings.  

• Not good!



1/13/2012

9

An Arithmetic Expression Grammar

E → E + E
E → E ∗ E
E → (E)
E → id

Inherent Ambiguity

Some CF languages have the property that every 

grammar for them is ambiguous.  We call such 

languages inherently ambiguous.

Example:

L = {anbncm: n, m ≥ 0} ∪ {anbmcm: n, m ≥ 0}.



1/13/2012

10

Inherent Ambiguity

L = {anbncm: n, m ≥ 0} ∪ {anbmcm: n, m ≥ 0}.

One grammar for L has the rules:

S → S1 | S2

S1 → S1c | A /* Generate all strings in {anbncm}.

A → aAb | ε

S2 → aS2 | B /* Generate all strings in {anbmcm}.

B → bBc | ε

Consider any string of the form anbncn.

It turns out that L is inherently ambiguous.

Inherent Ambiguity

Both of the following problems are undecidable:

• Given a context-free grammar G, is G ambiguous?

• Given a context-free language L, is L inherently 

ambiguous?



1/13/2012

11

But We Can Often Reduce Ambiguity

We can get rid of:

● some ε rules like S → ε,

● rules with symmetric right-hand sides, e.g.,

S → SS

E → E + E

● rule sets that lead to ambiguous attachment of 

optional postfixes.

A Highly Ambiguous Grammar

S→ ε
S → SS

S → (S)



1/13/2012

12

Resolving the Ambiguity with a 
Different Grammar

The biggest problem is the ε rule.

A different grammar for the language of balanced 

parentheses:

S* → ε
S* → S

S → SS

S → (S)

S → ()

Nullable Nonterminals

Examples:

S → aTa

T → ε

S → aTa

T → A B

A → ε
B → ε

A nonterminal X is nullable iff 

either:

(1) there is a rule X → ε, or

(2) there is a rule X → PQR… 

and P, Q, R, … 

are all nullable.



1/13/2012

13

Nullable Nonterminals

A nonterminal X is nullable iff either:

(1) there is a rule X → ε, or

(2) there is a rule X → PQR… and P, Q, R, … 

are all nullable.

So compute N, the set of nullable nonterminals, as follows:

1. Set N to the set of nonterminals that satisfy (1).  

2. Repeat until an entire pass is made without adding 

anything to N

Evaluate all other nonterminals with respect to (2).  

If any nonterminal satisfies (2) and is not in N, insert it. 

A General Technique for Getting Rid of εεεε-Rules

Definition: a rule is modifiable iff it is of the form:

P → αQβ, for some nullable Q. 

removeEps(G: cfg) =
1. Let G′ = G.
2. Find the set N of nullable nonterminals in G′.  
3. Repeat until G′ contains no modifiable rules that 
haven’t been  processed:

Given the rule P → αQβ, where Q ∈ N, 
add the rule P → αβ

if it is not already present and if αβ ≠ ε and if P ≠ αβ.  
4. Delete from G′ all rules of the form X → ε.
5. Return G′.

L(G′) = L(G) – {ε}



1/13/2012

14

An Example
G = {{S, T, A, B, C, a, b, c}, {a, b, c}, R, S), 

R =   { S → aTa

T → ABC
A → aA | C
B → Bb | C
C → c | ε } 

removeEps(G: cfg) =
1. Let G′ = G.
2. Find the set N of nullable nonterminals in G′.  
3. Repeat until G′ contains no modifiable rules that 

haven’t been  processed:
Given the rule P → αQβ, where Q ∈ N, 

add the rule P → αβ
if it is not already present and if αβ ≠ ε

and if P ≠ αβ.  
4. Delete from G′ all rules of the form X → ε.
5. Return G′.

What If εεεε ∈∈∈∈ L?

atmostoneEps(G: cfg) = 

1. G′′ = removeEps(G).

2. If SG is nullable then /* i. e., ε ∈ L(G)

2.1 Create in G′′ a new start symbol S*.

2.2 Add to RG′′ the two rules: 

S* → ε
S* → SG.

3. Return G′′.



1/13/2012

15

But There is Still Ambiguity

S* → ε What about ()()() ?

S* → S

S → SS

S → (S)

S → ()

Eliminating Symmetric Recursive Rules

S* → ε
S* → S
S → SS
S → (S)
S → ()

Replace    S → SS with one of:

S → SS1 /* force branching to the left
S → S1S /* force branching to the right

So we get:

S* → ε S → SS1

S* → S S → S1

S1 → (S)
S1 → () 



1/13/2012

16

Eliminating Symmetric Recursive Rules

So we get:
S* → ε
S* → S
S → SS1

S → S1

S1 → (S)
S1 → ()

S* 

S

S S1

S S1

S1

(   ) (   )           (   )

Arithmetic Expressions

E → E + E
E → E ∗ E
E → (E)
E → id }

E E

E E E E

E E                     E E

id       ∗ id        ∗ id                   id    ∗ id      ∗ id

Problem 1: Associativity



1/13/2012

17

Arithmetic Expressions

E → E + E
E → E ∗ E
E → (E)
E → id }

E E

E E E E

E E                     E E

id       ∗ id        +      id                   id    ∗ id      +        id

Problem 2: Precedence

Arithmetic Expressions - A Better Way

E → E + T

E→ T

T → T * F

T → F

F → (E)

F → id



1/13/2012

18

Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:

if cond1 then if cond2 then st1 else st2

<Statement> ::= <IfThenStatement> |  <IfThenElseStatement> | 
<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> | 
<IfThenElseStatementNoShortIf> | …

<IfThenStatement> ::= if ( <Expression> )  <Statement>
<IfThenElseStatement> ::= if ( <Expression> ) 

<StatementNoShortIf> else <Statement>

<IfThenElseStatementNoShortIf> ::= 
if ( <Expression> ) <StatementNoShortIf> 
else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if      (cond)        <StatementNoShortIf>       else      <Statement>

The Java Fix



1/13/2012

19

Going Too Far

S → NP VP
NP → the Nominal | Nominal | ProperNoun | NP PP
Nominal → N | Adjs N
N → cat | girl | dogs | ball | chocolate | 

bat

ProperNoun → Chris | Fluffy

Adjs → Adj Adjs | Adj
Adj → young | older | smart

VP → V | V NP | VP PP
V → like | likes | thinks | hits

PP → Prep NP
Prep → with

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

● Chris shot the bear with a rifle.

Going Too Far



1/13/2012

20

Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

● regular exprs.
or

● regular grammars ● context-free grammars
● recognize ● parse


