

Context-Free Grammars

A context-free grammar (a.k.a. CFG) G is a quadruple, (V, Σ, R, S), where:

- V is the rulle alphabet (vocabulary), which contains nonterminals and terminals.
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V-\Sigma) \times V^{*}$,
- S (the start symbol) is an element of $V-\Sigma$.

Example:

$(\{S, a, b\}, \quad\{a, b\}, \quad\{S \rightarrow a S b, S \rightarrow \varepsilon\}, S)$

Rules are also called productions.

Note: Some authors say that a CFG is (N, Σ, R, S), where N is the set of nonterminal symbols. In that case $\mathrm{V}=\mathrm{N} \cup \Sigma$. I may sometimes use N in this way. $\mathrm{N}=\mathrm{V}-\Sigma$.

Derivations

$$
\begin{aligned}
& x \Rightarrow_{G} y \text { iff } x=\alpha A \beta \\
& \qquad y=\alpha \underset{\gamma}{ }{ }^{\text {and } A \rightarrow \gamma \text { is in } R} \\
& w_{0} \Rightarrow_{G} w_{1} \Rightarrow_{G} w_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} w_{n} \text { is a derivation in } G . \\
& \text { Let } \Rightarrow_{G}{ }^{*} \text { be the reflexive, transitive closure of } \Rightarrow_{G} .
\end{aligned}
$$

Then the language generated by G, denoted $L(G)$, is:

$$
\left\{w \in \Sigma^{*}: S \Rightarrow_{G}^{*} w\right\} .
$$

A language L is context-free if there is some context-free grammar G such that $L=L(G)$.

 Example:

An Example Derivation

Let $G=(\{S, \mathrm{a}, \mathrm{b}\}, \quad\{\mathrm{a}, \mathrm{b}\}, \quad\{S \rightarrow \mathrm{a} S \mathrm{~b}, S \rightarrow \varepsilon\}, S)$
$S \Rightarrow$ a S b \Rightarrow aa S bb \Rightarrow aaa S bbb \Rightarrow aaabbb

So we can write $S \Rightarrow^{*}$ a aabbb

Regular Grammars

A brief side-trip into Chapter 7

Regular Grammars

In a regular grammar, every rule in R must have a righthand side that is:

- ε, or
- a single terminal, or
- a single terminal followed by a single nonterminal.

Regular: $S \rightarrow \mathrm{a}, S \rightarrow \varepsilon$, and $T \rightarrow \mathrm{a} S$
Not regularl: $S \rightarrow a S a$ and $a S a \rightarrow T$

Regular Grammar Example

$$
L=\left\{w \in\{a, b\}^{*}:|w| \text { is even }\right\} \quad((\mathrm{aa}) \cup(\mathrm{ab}) \cup(\mathrm{ba}) \cup(\mathrm{b},))^{*}
$$

$S \rightarrow \varepsilon$
$S \rightarrow a T$
$S \rightarrow \mathrm{~b} T$
$T \rightarrow a$
$T \rightarrow$ b
$T \rightarrow a S$
$T \rightarrow \mathrm{~b} S$

Regular Languages and Regular Grammars
Theorem: A language is regular iff it can be defined by a regular grammar.

Proof: By two constructions (first one on next slide)

Regular Languages and Regular Grammars

Regular grammar \rightarrow FSM:

$\operatorname{grammartofsm}(G=(V, \Sigma, R, S))=$

1. Create in M a separate state for each nonterminal in V.
2. Start state is the state corresponding to S.
3. If there are any rules in R of the form $X \rightarrow w$, for some $w \in \Sigma$, create a new state labeled \#.
4. For each rule of the form $X \rightarrow w Y$, add a transition from X to Y labeled w.
5. For each rule of the form $X \rightarrow w$, add a transition from X to \# labeled w.
6. For each rule of the form $X \rightarrow \varepsilon$, mark state X as accepting.
7. Mark state \# as accepting.

FSM \rightarrow Regular grammar: Similar.

Example - Even Length Strings

$$
\begin{array}{ll}
S \rightarrow \varepsilon & T \rightarrow \mathrm{a} \\
S \rightarrow \mathrm{a} T & T \rightarrow \mathrm{~b} \\
S \rightarrow \mathrm{~b} T & T \rightarrow \mathrm{a} S \\
& T \rightarrow \mathrm{~b} S
\end{array}
$$

Construct the FSM

> End of regular grammars side-trip

Recursive Grammar Rules

- A rule is recursive iff it is $X \rightarrow w_{1} Y w_{2}$, where:

$$
Y \Rightarrow^{*} w_{3} X w_{4} \text { for some } w_{1}, w_{2}, w_{3} \text {, and } w_{4} \text { in } V^{*} .
$$

- A grammar G is recursive iff G contains at least one recursive rule.
- Examples: $\quad S \rightarrow(S) \quad \begin{array}{ll}S & \rightarrow(T) \\ & T \rightarrow(S)\end{array}$

In general, non-recursive grammars are boring!

Self-Embedding Grammar Rules

- A rule in a grammar G is self-embedding iff it is :
$X \rightarrow w_{1} Y w_{2}$, where $Y \Rightarrow{ }^{*} w_{3} X w_{4}$ and both $w_{1} w_{3}$ and $w_{4} w_{2}$ are in Σ^{+}.

What is the difference between self-embedding and recursive?

- A grammar is self-embedding iff it contains at least one self-embedding rule.
- Examples: $S \rightarrow$ aSa self-embedding

$$
\begin{aligned}
& S \rightarrow \text { a } S \quad \text { recursive but not self-embedding } \\
& S \rightarrow a T \\
& T \rightarrow S a \quad \text { self-embedding }
\end{aligned}
$$

Where Context-Free Grammars Get Their Power

- If a grammar G is not self-embedding then $L(G)$ is regular.
- If a language L has the property that every grammar that defines it is self-embedding, then L is not regular.

Equal Numbers of a's and b's

$$
\text { Let } L=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\} .
$$

Find a CFG G such that $L=L(G)$

Arithmetic Expressions

$$
\left.\begin{array}{c}
G=(V, \Sigma, R, E), \text { where } \\
V=\left\{+,^{*},(,), i d, E\right\}, \\
\Sigma=\left\{+,^{*},(,), i d\right\}, \\
R=\{ \\
E \rightarrow E+E \\
E \rightarrow E * E \\
E \rightarrow(E) \\
E
\end{array}\right)
$$

BNF

A notation for writing practical context-free grammars

- The symbol | should be read as "or".

Example: $S \rightarrow$ aSb| bSa $|S S| \varepsilon$

- Allow a nonterminal symbol to be any sequence of characters surrounded by angle brackets.

Examples of nonterminals:
<program>
<variable>

```
勆
    {}
<stmt-list> ::= <stmt> |
    <stmt-list> <stmt>
<stmt> ::= <block> |
    while (<cond>) <stmt> |
    if (<cond>) <stmt> |
    do <stmt> while (<cond>); |
    <assignment-stmt>; |
    return |
    return <expression> |
        <method-invocation>;
```


Spam Generation

```
<spc> -> space | . | - | _ | = |: | * | / | i | empty
<Word> -> <V> <spc> <l> <spc> <A> <spc> <G> <spc> <R> <spc> <A>
        <V> -> V | v | \/
        <l> -> I | i | ! | i | : | ì | í | ï | î| ì | Í | İ | i | i | l | 1
        <A> -> A | a | \\ | | ^ | A | A | A | A | \tilde{A}| á | â | ä | à | å | ã
        <G> ->G | g |&| 6 | 9
        <R> }->\textrm{R}|\textrm{r}|
```

Example production:

```
    <spc> ->-
```

 \(<\mathrm{V}>\rightarrow \mathrm{V} \quad<\mathrm{l}>::=!\quad<\mathrm{A}>::=\mathrm{a} \quad<\mathrm{G}>::=\mathrm{G} \quad<\mathrm{R}>::=\) ® \(\mathrm{B}^{2} \quad<\mathrm{A}>::=\) ^
 $<$ Word> \rightarrow v-!-ä-G-®-^

These production rules yield 1,843,200 possible spellings.
How Many Ways Can You Spell V1@gra? By Brian Hayes
American Scientist, July-August 2007
http://www.americanscientist.org/template/AssetDetail/assetid/55592

```
mop
HTML
<ul>
    <li>ltem 1, which will include a sublist</li>
        <ul>
            <li>First item in sublist</li>
            <li>Second item in sublist</li>
        </ul>
    <li>Item 2</li>
</ul>
```

A grammar:
/* Text is a sequence of elements.
HTMLtext \rightarrow Element HTMLtext| ε
Element $\rightarrow U L|L I| \ldots \quad$ (and other kinds of elements that are allowed in the body of an HTML document)
/* The and tags must match.
UL \rightarrow HTMLtext
/* The and tags must match.
LI \rightarrow HTMLtext

```
復泽
```


English

```
\(S \rightarrow N P V P\)
\(N P \rightarrow\) the Nominal | a Nominal | Nominal |
ProperNoun | NP PP
Nominal \(\rightarrow N \mid\) Adjs \(N\)
\(N \rightarrow\) cat \(\mid\) dogs \(\mid\) bear \(\mid\) girl |chocolate \(\mid\) rifle
ProperNoun \(\rightarrow\) Chris \(\mid\) Fluffy
Adjs \(\rightarrow\) Adj Adjs | Adj
Adj \(\rightarrow\) young | older \(\mid\) smart
\(V P \rightarrow V|V N P| V P P P\)
\(V \rightarrow\) like|likes|thinks|shoots|smells
\(P P \rightarrow\) Prep NP
Prep \(\rightarrow\) with
```


(Designing Context-Free Grammars

- Generate related regions together.
$A^{n} B^{n}$
- Generate concatenated regions:
$A \rightarrow B C$
- Generate outside in:

$$
A \rightarrow \mathrm{a} A \mathrm{~b}
$$

Concatenating Independent Languages

Let $L=\left\{a^{n^{n}} b^{n}{ }^{m}: n, m \geq 0\right\}$.
The c^{m} portion of any string in L is completely independent of the $a^{n} b^{n}$ portion, so we should generate the two portions separately and concatenate them together.

$$
\begin{aligned}
& G=(\{S, N, C, a, b, c\},\{a, b, c\}, R, S\} \text { where: } \\
& R=\{S \rightarrow N C \\
& N \rightarrow \mathrm{aN} \mathrm{~b} \\
& N \rightarrow \varepsilon \\
& C \rightarrow c C \\
& C \rightarrow \varepsilon \\
&\} .
\end{aligned}
$$

$L=\left\{a^{n_{1}} b^{n_{1}} a^{n_{2}} b^{n_{2}} \ldots a^{n_{k}} b^{n_{k}}: \boldsymbol{k} \geq \mathbf{0}\right.$ and $\left.\forall \boldsymbol{i}\left(\boldsymbol{n}_{\boldsymbol{i}} \geq \mathbf{0}\right)\right\}$

Examples of strings in L: ε, abab, a abbaaabbbabab

Note that $L=\left\{a^{m} b^{n}: n \geq 0\right\}^{*}$.
$G=(\{S, M, a, b\},\{a, b\}, R, S\}$ where:

$$
\begin{aligned}
& R=\{ S \rightarrow M S \\
& S \rightarrow \varepsilon \\
& M \rightarrow a M \mathrm{~b} \cdot \\
& M \rightarrow \varepsilon \\
&\} .
\end{aligned}
$$

Another Example: Unequal a's and b's

$$
\begin{aligned}
& L=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{m}: n \neq m\right\} \\
& \begin{array}{c}
G=(V, \Sigma, R, S), \text { where } \\
V=\{\mathrm{a}, \mathrm{~b}, S, \\
\Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
R=
\end{array}
\end{aligned}
$$

Simplifying Context-Free Grammars

Remove non-productive and unreachable non-terminals.

Unproductive Nonterminals

removeunproductive(G : CFG) $=$

1. $G^{\prime}=G$.
2. Mark every nonterminal symbol in G^{\prime} as unproductive.
3. Mark every terminal symbol in G^{\prime} as productive.
4. Until one entire pass has been made without any new symbol being marked do:

For each rule $X \rightarrow \alpha$ in R do:
If every symbol in α has been marked as productive and X has not yet been marked as productive then:

Mark X as productive.
5. Remove from G^{\prime} every unproductive symbol.
6. Remove from G^{\prime} every rule that contains an unproductive symbol.
7. Return G^{\prime}.

Unreachable Nonterminals

removeunreachable(G: CFG) =

1. $G^{\prime}=G$.
2. Mark S as reachable.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new symbol being marked do:
For each rule $X \rightarrow \alpha A \beta$ (where $A \in V-\Sigma$) in R do:
If X has been marked as reachable and A has not then:
Mark A as reachable.
5. Remove from G^{\prime} every unreachable symbol.
6. Remove from G^{\prime} every rule with an unreachable symbol on the left-hand side.
7. Return G^{\prime}.

Proving the Correctness of a Grammar

$A^{n} B^{n}=\left\{a^{n} b^{n}: n \geq 0\right\}$
$G=(\{S, \mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, R, S)$,
$R=\{S \rightarrow \mathrm{a} S \mathrm{~b}$
$S \rightarrow \varepsilon$
\}

- Prove that G generates only strings in L.
- Prove that G generates all the strings in L.

