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Algorithms and Decision Procedures 

for Regular Languages

Intro to Context-free Grammars

MA/CSSE 474
Theory of Computation

Decision Procedures

A decision procedure is an algorithm whose result is a 

Boolean value.  It must:

●Halt

● Be correct

Usually a decision procedure has one or more parameters 

Zero-parameter decision procedures are not very 

interesting!
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Decision Procedures for 
Regular Languages

●Given an FSM M and a string w, does M accept w?  

●Given a regular expression α and a string w, does α

generate w? 

● Given an FSM M, is L(M) empty?

●Given an FSM M, is L(M) = ΣM*?

●Given an FSM M, is L(M) finite?

●Given an FSM M, is L(M) infinite?

● Given two FSMs M1 and M2, are they equivalent? 

●Given an FSM M, is M minimal?

Answering Specific Questions

Given two regular expressions α1 and α2, is:

(L(α1) ∩ L(α2)) – {ε} ≠ ∅?

1. From α1, construct an FSM M1 such that L(α1) = L(M1).
2. From α2, construct an FSM M2 such that L(α2) = L(M2).
3. Construct M′ such that L(M′ ) = L(M1) ∩ L(M2).
4. Construct Mε such that L(Mε) = {ε}.
5. Construct M′′ such that L(M′′ ) = L(M′ ) - L(Mε).
6. If L(M′′ ) is empty return False; else return True.

For practice later:  Given two regular expressions α1 and 

α2, are there at least 3 strings that are generated by both 

of them?
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Summary of Algorithms

●Operate on FSMs without altering the language that is 

accepted:

● Ndfsmtodfs

● MinDFSM

The next few slides are here for reference.  

I do not expect to spend class time on them.

Summary of Algorithms

● Compute functions of languages defined as FSMs:
● Given FSMs M1 and M2, construct a FSM M3 such that 

L(M3) = L(M2) ∪ L(M1).
● Given FSMs M1 and M2, construct a new FSM M3 such that

L(M3) =  L(M2) L(M1).
● Given FSM M, construct an FSM M* such that 

L(M*) = (L(M))*.
● Given a DFSM M, construct an FSM M* such that

L(M*) = ¬L(M).
● Given two FSMs M1 and M2, construct an FSM M3 such that 

L(M3) =  L(M2) ∩ L(M1).
● Given two FSMs M1 and M2, construct an FSM M3 such that 

L(M3) =  L(M2) - L(M1).
● Given an FSM M, construct an FSM M* such that 

L(M*) = (L(M))R.
● Given an FSM M, construct an FSM M* that accepts 

letsub(L(M)).



1/10/2012

4

Algorithms, Continued

● Converting between FSMs and regular expressions:

● Given a regular expression α, construct an FSM M

such that: 

L(α) = L(M)

● Given an FSM M, construct a regular expression α

such that:

L(α) = L(M)

● Algorithms that implement operations on languages 

defined by regular expressions: any operation that can 

be performed on languages defined by FSMs can be 

implemented by converting all regular expressions to 

equivalent FSMs and then executing the appropriate 

FSM algorithm. 

Algorithms, Continued

● Converting between FSMs and regular grammars:

● Given a regular grammar G, construct an FSM M

such that: 

L(G) = L(M)

● Given an FSM M, construct a regular grammar G

such that: 

L(G) = L(M).
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Algorithms: Decision Procedures

● Decision procedures that answer questions about languages 
defined by FSMs:

● Given an FSM M and a string s, decide whether s is
accepted by M.

● Given an FSM M, decide whether L(M) is empty.
● Given an FSM M, decide whether L(M) is finite.
● Given two FSMs, M1 and M2, decide whether 

L(M1) = L(M2).  
● Given an FSM M, is M minimal?

● Decision procedures that answer questions about languages 
defined by regular expressions: Again, convert the regular 
expressions to FSMs and apply the FSM algorithms.

Context-Free Grammars

CFG ≡ BNF (mostly)

Chapter 11
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Languages and Machines

Rewrite Systems and Grammars

A rewrite system (or production system or rule-based 
system) is:

● a list of rules, and 
● an algorithm for applying them.  

Each rule has a left-hand side and a right hand side. 

Example rules:

S → aSb 
aS → ε

aSb → bSabSa
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Simple-rewrite

simple-rewrite(R: rewrite system, w: initial string) = 

1. Set working-string to w.

2. Until told by R to halt do:

Match the lhs of some rule against some part of 

working-string.

Replace the matched part of working-string with the 

rhs of the rule that was matched.

3. Return working-string.

A Rewrite System Formalism

A rewrite system formalism specifies:

● The form of the rules

● How simple-rewrite works:

● How to choose rules?

● When to quit?
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An Example

w = SaS

Rules: 
[1]   S → aSb

[2]   aS → ε

●What order to apply the rules?

●When to quit?

Rule Based Systems

● Expert systems

●Cognitive modeling

● Business practice modeling

●General models of computation

●Grammars
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Grammars Define Languages

A grammar, G,  is a set of rules that are stated in terms 

of two alphabets:

• a terminal alphabet, Σ, that contains the symbols that 

make up the strings in L(G), and 

•a nonterminal alphabet,N, the elements of which will 

function as working symbols that will be used while the 

grammar is operating.  These symbols will disappear by 

the time the grammar finishes its job and generates a 

string.  Note:   Σ∩N = ∅

A grammar has a unique start symbol, often called S.   

Using a Grammar to Derive a String

Simple-rewrite (G, S) will generate the strings in L(G).  

We will use the symbol ⇒ to indicate steps in a 

derivation.  

In our example:
[1]   S → aSb

[2]   aS → ε

A derivation could begin with:

S ⇒ aSb⇒ aaSbb⇒ …



1/10/2012

10

Generating Many Strings

• Multiple rules may match.

Given: S → aSb, S → bSa, and S → ε

Derivation so far: S ⇒ aSb⇒ aaSbb⇒

Three choices at the next step:

S ⇒ aSb⇒ aaSbb⇒ aaaSbbb (using rule 1), 

S ⇒ aSb⇒ aaSbb⇒ aabSabb (using rule 2), 

S ⇒ aSb⇒ aaSbb⇒ aabb (using rule 3).

Generating Many Strings

• One rule may match in more than one way.

Given: S → aTTb, T → bTa, and T → ε

Derivation so far: S ⇒ aTTb⇒

Two choices at the next step:

S ⇒ aTTb⇒ abTaTb⇒

S ⇒ aTTb⇒ aTbTab⇒
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When to Stop
May stop when:

1. The working string no longer contains any nonterminal 
symbols (including, when it is ε).

In this case,  we say that the working string is generated
by the grammar.  

Example:

S ⇒ aSb⇒ aaSbb⇒ aabb

When to Stop
May stop when:

2. There are nonterminal symbols in the working string but 
none of them is in a substring that is the left-hand side of 
any rule in the grammar.

In this case, we have a blocked or non-terminated derivation 
but no generated string.

Example:

Rules: S → aSb, S → bTa, and S → ε

Derivations: S ⇒ aSb⇒ abTab⇒ [blocked]
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When to Stop

It is possible that neither (1) nor (2) is achieved.  

Example: 

G contains only the rules S → Ba and B → bB, with S the start 
symbol.  

Then all derivations proceed as:

S ⇒ Ba⇒ bBa⇒ bbBa⇒ bbbBa⇒ bbbbBa⇒ ...

Context-free Grammars, Languages, 
and PDAs

Context-free 

Language

Context-free 

Grammar

PDA

L

Accepts
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Context-Free Grammars

No restrictions on the form of the right hand sides.

S → abDeFGab

But require single non-terminal on left hand side.

S →

but not  ASB →

anbn

Balanced Parentheses language

ambn : m>= n
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Context-Free Grammars

A context-free grammar G is a quadruple,

(V, Σ, R, S), where:

● V is the rule alphabet, which contains nonterminals

and terminals.

● Σ (the set of terminals) is a subset of V,

● R (the set of rules) is a finite subset of (V - Σ) ×V*, 

● S (the start symbol) is an element of V - Σ.

Example:

({S, a, b},  {a, b},   {S → a S b, S → ε},  S)

Rules are also known as productions.


