
1/10/2012

1

Algorithms and Decision Procedures

for Regular Languages

Intro to Context-free Grammars

MA/CSSE 474
Theory of Computation

Decision Procedures

A decision procedure is an algorithm whose result is a

Boolean value. It must:

●Halt

● Be correct

Usually a decision procedure has one or more parameters

Zero-parameter decision procedures are not very

interesting!

1/10/2012

2

Decision Procedures for
Regular Languages

●Given an FSM M and a string w, does M accept w?

●Given a regular expression α and a string w, does α

generate w?

● Given an FSM M, is L(M) empty?

●Given an FSM M, is L(M) = ΣM*?

●Given an FSM M, is L(M) finite?

●Given an FSM M, is L(M) infinite?

● Given two FSMs M1 and M2, are they equivalent?

●Given an FSM M, is M minimal?

Answering Specific Questions

Given two regular expressions α1 and α2, is:

(L(α1) ∩ L(α2)) – {ε} ≠ ∅?

1. From α1, construct an FSM M1 such that L(α1) = L(M1).
2. From α2, construct an FSM M2 such that L(α2) = L(M2).
3. Construct M′ such that L(M′) = L(M1) ∩ L(M2).
4. Construct Mε such that L(Mε) = {ε}.
5. Construct M′′ such that L(M′′) = L(M′) - L(Mε).
6. If L(M′′) is empty return False; else return True.

For practice later: Given two regular expressions α1 and

α2, are there at least 3 strings that are generated by both

of them?

1/10/2012

3

Summary of Algorithms

●Operate on FSMs without altering the language that is

accepted:

● Ndfsmtodfs

● MinDFSM

The next few slides are here for reference.

I do not expect to spend class time on them.

Summary of Algorithms

● Compute functions of languages defined as FSMs:
● Given FSMs M1 and M2, construct a FSM M3 such that

L(M3) = L(M2) ∪ L(M1).
● Given FSMs M1 and M2, construct a new FSM M3 such that

L(M3) = L(M2) L(M1).
● Given FSM M, construct an FSM M* such that

L(M*) = (L(M))*.
● Given a DFSM M, construct an FSM M* such that

L(M*) = ¬L(M).
● Given two FSMs M1 and M2, construct an FSM M3 such that

L(M3) = L(M2) ∩ L(M1).
● Given two FSMs M1 and M2, construct an FSM M3 such that

L(M3) = L(M2) - L(M1).
● Given an FSM M, construct an FSM M* such that

L(M*) = (L(M))R.
● Given an FSM M, construct an FSM M* that accepts

letsub(L(M)).

1/10/2012

4

Algorithms, Continued

● Converting between FSMs and regular expressions:

● Given a regular expression α, construct an FSM M

such that:

L(α) = L(M)

● Given an FSM M, construct a regular expression α

such that:

L(α) = L(M)

● Algorithms that implement operations on languages

defined by regular expressions: any operation that can

be performed on languages defined by FSMs can be

implemented by converting all regular expressions to

equivalent FSMs and then executing the appropriate

FSM algorithm.

Algorithms, Continued

● Converting between FSMs and regular grammars:

● Given a regular grammar G, construct an FSM M

such that:

L(G) = L(M)

● Given an FSM M, construct a regular grammar G

such that:

L(G) = L(M).

1/10/2012

5

Algorithms: Decision Procedures

● Decision procedures that answer questions about languages
defined by FSMs:

● Given an FSM M and a string s, decide whether s is
accepted by M.

● Given an FSM M, decide whether L(M) is empty.
● Given an FSM M, decide whether L(M) is finite.
● Given two FSMs, M1 and M2, decide whether

L(M1) = L(M2).
● Given an FSM M, is M minimal?

● Decision procedures that answer questions about languages
defined by regular expressions: Again, convert the regular
expressions to FSMs and apply the FSM algorithms.

Context-Free Grammars

CFG ≡ BNF (mostly)

Chapter 11

1/10/2012

6

Languages and Machines

Rewrite Systems and Grammars

A rewrite system (or production system or rule-based
system) is:

● a list of rules, and
● an algorithm for applying them.

Each rule has a left-hand side and a right hand side.

Example rules:

S → aSb
aS → ε

aSb → bSabSa

1/10/2012

7

Simple-rewrite

simple-rewrite(R: rewrite system, w: initial string) =

1. Set working-string to w.

2. Until told by R to halt do:

Match the lhs of some rule against some part of

working-string.

Replace the matched part of working-string with the

rhs of the rule that was matched.

3. Return working-string.

A Rewrite System Formalism

A rewrite system formalism specifies:

● The form of the rules

● How simple-rewrite works:

● How to choose rules?

● When to quit?

1/10/2012

8

An Example

w = SaS

Rules:
[1] S → aSb

[2] aS → ε

●What order to apply the rules?

●When to quit?

Rule Based Systems

● Expert systems

●Cognitive modeling

● Business practice modeling

●General models of computation

●Grammars

1/10/2012

9

Grammars Define Languages

A grammar, G, is a set of rules that are stated in terms

of two alphabets:

• a terminal alphabet, Σ, that contains the symbols that

make up the strings in L(G), and

•a nonterminal alphabet,N, the elements of which will

function as working symbols that will be used while the

grammar is operating. These symbols will disappear by

the time the grammar finishes its job and generates a

string. Note: Σ∩N = ∅

A grammar has a unique start symbol, often called S.

Using a Grammar to Derive a String

Simple-rewrite (G, S) will generate the strings in L(G).

We will use the symbol ⇒ to indicate steps in a

derivation.

In our example:
[1] S → aSb

[2] aS → ε

A derivation could begin with:

S ⇒ aSb⇒ aaSbb⇒ …

1/10/2012

10

Generating Many Strings

• Multiple rules may match.

Given: S → aSb, S → bSa, and S → ε

Derivation so far: S ⇒ aSb⇒ aaSbb⇒

Three choices at the next step:

S ⇒ aSb⇒ aaSbb⇒ aaaSbbb (using rule 1),

S ⇒ aSb⇒ aaSbb⇒ aabSabb (using rule 2),

S ⇒ aSb⇒ aaSbb⇒ aabb (using rule 3).

Generating Many Strings

• One rule may match in more than one way.

Given: S → aTTb, T → bTa, and T → ε

Derivation so far: S ⇒ aTTb⇒

Two choices at the next step:

S ⇒ aTTb⇒ abTaTb⇒

S ⇒ aTTb⇒ aTbTab⇒

1/10/2012

11

When to Stop
May stop when:

1. The working string no longer contains any nonterminal
symbols (including, when it is ε).

In this case, we say that the working string is generated
by the grammar.

Example:

S ⇒ aSb⇒ aaSbb⇒ aabb

When to Stop
May stop when:

2. There are nonterminal symbols in the working string but
none of them is in a substring that is the left-hand side of
any rule in the grammar.

In this case, we have a blocked or non-terminated derivation
but no generated string.

Example:

Rules: S → aSb, S → bTa, and S → ε

Derivations: S ⇒ aSb⇒ abTab⇒ [blocked]

1/10/2012

12

When to Stop

It is possible that neither (1) nor (2) is achieved.

Example:

G contains only the rules S → Ba and B → bB, with S the start
symbol.

Then all derivations proceed as:

S ⇒ Ba⇒ bBa⇒ bbBa⇒ bbbBa⇒ bbbbBa⇒ ...

Context-free Grammars, Languages,
and PDAs

Context-free

Language

Context-free

Grammar

PDA

L

Accepts

1/10/2012

13

Context-Free Grammars

No restrictions on the form of the right hand sides.

S → abDeFGab

But require single non-terminal on left hand side.

S →

but not ASB →

anbn

Balanced Parentheses language

ambn : m>= n

1/10/2012

14

Context-Free Grammars

A context-free grammar G is a quadruple,

(V, Σ, R, S), where:

● V is the rule alphabet, which contains nonterminals

and terminals.

● Σ (the set of terminals) is a subset of V,

● R (the set of rules) is a finite subset of (V - Σ) ×V*,

● S (the start symbol) is an element of V - Σ.

Example:

({S, a, b}, {a, b}, {S → a S b, S → ε}, S)

Rules are also known as productions.

