有
 Poetry The Pumping Lemma

Any regular language L has a magic number p And any long-enough word in L has the following property: Amongst its first p symbols is a segment you can find Whose repetition or omission leaves x amongst its kind.

So if you find a language L which fails this acid test,
And some long word you pump becomes distinct from all the rest,
By contradiction you have shown that language L is not A regular guy, resiliant to the damage you have wrought.

But if, upon the other hand, x stays within its L,
Then either L is regular, or else you chose not well.
For wis xyz, and y cannot be null,
And y must come before p symbols have been read in full.
As mathematical postscript, an addendum to the wise:
The basic proof we outlined here does certainly generalize.
So there is a pumping lemma for all languages context-free,
Although we do not have the same for those that are r.e.
-- Martin Cohn

Questions on Pumping Theorem?

- Or anything else from Chapter 8 ?

Reminder: Start early on HW 7, which has a "grace day" until Wednesday at noon.

Recap: Using the Pumping Theorem Effectively

- To choose w:
- Choose a w that is in the part of L that makes it not regular.
- Choose a w that is only barely in L.
- Choose a w with as homogeneous as possible an initial region of length at least k.
- To choose q :
- Try letting q be either 0 or 2 .
- If that doesn't work, analyze L to see if there is some other specific value that will work.

Where we are so far

- To show a language L to be non-regular:
- Myhill-Nerode theorem
- Number of equivalence classes for \approx_{L} is infinite
- Pumpiing Theorem
- Closure properties, in conjunction with languages already shown to be non-regular.

Using the Closure Properties to prove a language non-regular

The two most useful properties are closure under:

- Intersection
- Complement

Using the Closure Properties

$$
L=\left\{w \in\{a, b\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}
$$

If L were regular, then:

$$
L^{\prime}=L \cap .
$$

\qquad
would also be regular. But it isn't.

$L=\left\{a^{\prime} b ; i, j \geq 0\right.$ and $\left.i \neq j\right\}$

Try to use the Pumping Theorem.
What would you choose for w?

$L=\left\{a^{\circ} b: i, j \geq 0\right.$ and $\left.i \neq j\right\}$

An easier way:

If L is regular then so is $\neg L$. Is it?

$L=\left\{a^{\prime} b ; i, j \geq 0\right.$ and $\left.i \neq j\right\}$

An easier way:

If L is regular then so is $\neg L$. Is it?
$\neg L=A^{n} B^{n} \cup\{$ out of order $\}$

If $\neg L$ is regular, then so is $L^{\prime}=\neg L \cap$ a*b*
$=$ \qquad

$L=\left\{a^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and (if $i=1$ then $j=k$) $\}$

We will show that every string in L of length at least 1 is pumpable.

Does that imply that L is regular? We shall see!

Rewrite the final condition as: $\quad(i \neq 1)$ or $(j=k)$

$L=\left\{a^{\prime} b^{j} c^{k}: i, j, k \geq 0\right.$ and $(i \neq 1$ or $\left.j=k)\right\}$

Every string in L of length at least 1 is pumpable:

-If $i=0$ then: if $j \neq 0$, let y be b; otherwise, let y be c. Pump in or out. Then i will still be 0 and thus not equal to 1 , so the resulting string is in L.
-If $i=1$ then: let y be a. Pump in or out. Then i will no longer equal 1, so the resulting string is in L.
-If $i=2$ then: let y be aa. Pump in or out. Then i cannot equal 1, so the resulting string is in L.
-If $i>2$ then: let y be a. Pump out once or in any number of times. Then i cannot equal 1, so the resulting string is in L.

$L=\left\{a^{\prime} b^{j} c^{k}: i, j, k \geq 0\right.$ and $(i \neq 1$ or $\left.j=k)\right\}$

But the closure theorems help. If L is regular, then so is:

$$
\begin{aligned}
& L^{\prime}=L \cap a b^{*} c^{*} . \\
& L^{\prime}=\left\{a b^{k} c^{k}: j, k \geq 0\right\}
\end{aligned}
$$

Can easily use Pumping Theorem to show that L^{\prime} is not regular

$L=\left\{a^{\prime} b^{\prime} c^{k}: i, j, k \geq 0\right.$ and $(i \neq 1$ or $\left.j=k)\right\}$ An Alternative

If L is regular, then so is L^{R} :

$$
L^{\mathrm{R}}=\left\{c^{k} b^{\prime} \mathrm{a}^{i}: i, j, k \geq 0 \text { and }(i \neq 1 \text { or } j=k)\right\}
$$

Use Pumping to show that L^{\prime} is not regular:

Is English Regular?

Is English finite?

Is English Regular?

- The rat ran.
- The rat that the cat saw ran.
- The rat that the cat that the dog chased saw ran.

Let:
$A=\{c a t$, rat, dog, bird, bug, pony $\}$
$V=\{r a n$, saw, chased, flew, sang, frolicked $\}$.
Let $L=$ English $\cap\left\{\right.$ The $\left.A(\text { that the } A)^{*} V^{*} V\right\}$.
$L=\left\{\right.$ The $\left.A(\text { that the } A)^{n} V^{n} V, n \geq 0\right\}$.
Let $w=$ The cat $(\text { that the rat })^{k} \operatorname{saw}^{k}$ ran.

Functions from one Language to Another

```
Let firstchars(L) =
    {w: \existsy\inL
            ( y=cx,
                c\in \SigmaL,
        x\in\mp@subsup{\Sigma}{L}{*}}\mp@subsup{}{}{*}\mathrm{ , and
        w\in\mp@subsup{c}{}{*})}
```

Are the regular languages closed under firstchars?

\boldsymbol{L}	firstchars(\boldsymbol{L})
\varnothing	
$\mathrm{a}^{*} \mathrm{~b}^{*}$	
$\mathrm{ca}^{*} \mathrm{cb} *$	

Defining Functions from one Language to Another

Let $\operatorname{chop}(L)=$
$\{w: \exists x \in L$
$\left(x=x_{1} c x_{2}\right.$,
$x_{1} \in \Sigma_{L}^{*}$,
$x_{2} \in \Sigma_{L}{ }^{*}$,
Recap: Give an English description of the relationship between chop(L) and L
$c \in \Sigma_{L}$,
$\left|x_{1}\right|=\left|x_{2}\right|$, and
$\left.\left.w=x_{1} x_{2}\right)\right\}$
Are the regular languages closed under chop?

\boldsymbol{L}	$\boldsymbol{\operatorname { c h o p }}(\boldsymbol{L})$
\varnothing	
$\mathrm{a} * \mathrm{~b} *$	
$\mathrm{a} * \mathrm{db} *$	

Decision Procedures

A decision procedure is an algorithm whose result is a Boolean value. It must:

- Halt
- Be correct

Important decision procedures exist for regular languages:

- Given an FSM M and a string s, does M accept s ?
- Given a regular expression α and a string w, does α generate w ?

Membership

We can answer the membership question by running an FSM.

But we must be careful if it's an NDFSM:

Membership

decideFSM(M: FSM, w: string) =
If ndfsmsimulate(M, w) accepts then return True else return False.

Recall that ndfsmsimulate takes epsilon-closure at every stage, so there is no danger of getting into an infinite loop.
decideregex $(\alpha$: regular expression, w : string $)=$
From α, use regextofsm to construct an FSM M such that $L(\alpha)=L(M)$.
Return decideFSM(M, w).

Emptiness and Finiteness

- Given an FSM M, is $L(M)$ empty?
- Given an FSM M, is $L(M)=\Sigma_{M}{ }^{*}$?
- Given an FSM M, is $L(M)$ finite?
- Given an FSM M, is $L(M)$ infinite?
- Given two FSMs M_{1} and M_{2}, are they equivalent?

Emptiness

Given an FSM M, is $L(M)$ empty?

- The graph analysis approach:

1. Mark all states that are reachable via some path from the start state of M.
2. If at least one marked state is an accepting state, return False. Else return True.

- The simulation approach:

1. Let $M^{\prime}=n d f s m t o d f s m(M)$.
2. For each string w in Σ^{*} such that $|w|<\left|K_{M}{ }^{\prime}\right|$ do:

Run decideFSM($\left.M^{\prime}, w\right)$.
3. If M^{\prime} accepts at least one such string, return False.

Else return True.

Finiteness

Given an FSM M, is $L(M)$ finite?

- The graph analysis approach:
- The simulation approach

Equivalence

- Given two FSMs M_{1} and M_{2}, are they equivalent? In other words, is $L\left(M_{1}\right)=L\left(M_{2}\right)$? We can describe two different algorithms for answering this question.

Equivalence

- Given two FSMs M_{1} and M_{2}, are they equivalent? In other words, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
equalFSMs $s_{1}\left(M_{1}:\right.$ FSM, $M_{2}:$ FSM $)=$

1. $M_{1}^{\prime}=$ buildFSMcanonicalform $\left(M_{1}\right)$.
2. $M_{2}{ }^{\prime}=$ buildFSMcanonicalform $\left(M_{2}\right)$.
3. If M_{1}^{\prime} and M_{2}^{\prime} are equal, return True, else return False.

Equivalence

- Given two FSMs M_{1} and M_{2}, are they equivalent? In other words, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Observe that M_{1} and M_{2} are equivalent iff:

$$
\left(L\left(M_{1}\right)-L\left(M_{2}\right)\right) \cup\left(L\left(M_{2}\right)-L\left(M_{1}\right)\right)=\varnothing .
$$

equalFSMs $\left(M_{1}: F S M, M_{2}: F S M\right)=$

1. Construct M_{A} to accept $L\left(M_{1}\right)-L\left(M_{2}\right)$.
2. Construct M_{B} to accept $L\left(M_{2}\right)-L\left(M_{1}\right)$.
3. Construct M_{C} to accept $L\left(M_{A}\right) \cup L\left(M_{B}\right)$.
4. Return emptyFSM $\left(M_{C}\right)$.
