
1/9/2012

1

Poetry
The Pumping Lemma

Any regular language L has a magic number p
And any long-enough word in L has the following property:
Amongst its first p symbols is a segment you can find
Whose repetition or omission leaves x amongst its kind.

So if you find a language L which fails this acid test,
And some long word you pump becomes distinct from all the

rest,
By contradiction you have shown that language L is not
A regular guy, resiliant to the damage you have wrought.

But if, upon the other hand, x stays within its L,
Then either L is regular, or else you chose not well.
For w is xyz, and y cannot be null,
And y must come before p symbols have been read in full.

As mathematical postscript, an addendum to the wise:
The basic proof we outlined here does certainly generalize.
So there is a pumping lemma for all languages context-free,
Although we do not have the same for those that are r.e.

-- Martin Cohn

More on showing L non-regular

Algorithms and Decision Procedures

for Regular Languages

MA/CSSE 474
Theory of Computation

1/9/2012

2

Questions on Pumping Theorem?

• Or anything else from Chapter 8?

Reminder: Start early on HW 7,
which has a "grace day" until
Wednesday at noon.

Recap: Using the Pumping Theorem
Effectively

● To choose w:

●Choose a w that is in the part of L that makes it not

regular.

●Choose a w that is only barely in L.

●Choose a w with as homogeneous as possible an

initial region of length at least k.

● To choose q:

● Try letting q be either 0 or 2.

● If that doesn’t work, analyze L to see if there is some

other specific value that will work.

Q1

1/9/2012

3

Where we are so far

• To show a language L to be non-regular:

– Myhill-Nerode theorem

• Number of equivalence classes for ≈L is infinite

– Pumpiing Theorem

– Closure properties, in conjunction with

languages already shown to be non-regular.

Using the Closure Properties to prove
a language non-regular

The two most useful properties are closure under:

• Intersection

• Complement

1/9/2012

4

Using the Closure Properties

L = {w ∈ {a, b}*: #a(w) = #b(w)}

If L were regular, then:

L′ = L ∩ _______

would also be regular. But it isn’t.

L = {aibj: i, j ≥≥≥≥ 0 and i ≠≠≠≠ j}

Try to use the Pumping Theorem.

What would you choose for w?

1/9/2012

5

L = {aibj: i, j ≥≥≥≥ 0 and i ≠≠≠≠ j}

An easier way:

If L is regular then so is ¬L. Is it?

L = {aibj: i, j ≥≥≥≥ 0 and i ≠≠≠≠ j}

An easier way:

If L is regular then so is ¬L. Is it?

¬L = AnBn ∪ {out of order}

If ¬L is regular, then so is L′ = ¬L ∩ a*b*

= ___________

1/9/2012

6

L = {aibjck: i, j, k ≥ 0 and (if i = 1 then j = k)}

We will show that every string in L of length at least 1 is

pumpable.

Does that imply that L is regular? We shall see!

Rewrite the final condition as: (i ≠ 1) or (j = k)

L = {aibjck: i, j, k ≥ 0 and (i ≠≠≠≠ 1 or j = k)}

Every string in L of length at least 1 is pumpable:

•If i = 0 then: if j ≠ 0, let y be b; otherwise, let y be c. Pump

in or out. Then i will still be 0 and thus not equal to 1, so

the resulting string is in L.

•If i = 1 then: let y be a. Pump in or out. Then i will no

longer equal 1, so the resulting string is in L.

•If i = 2 then: let y be aa. Pump in or out. Then i cannot

equal 1, so the resulting string is in L.

•If i > 2 then: let y be a. Pump out once or in any number

of times. Then i cannot equal 1, so the resulting string is in

L.

1/9/2012

7

L = {aibjck: i, j, k ≥ 0 and (i ≠≠≠≠ 1 or j = k)}

But the closure theorems help. If L is regular, then so is:

L′ = L ∩ ab*c*.

L′ = {abkck : j, k ≥ 0}

Can easily use Pumping Theorem to show that L′ is not

regular

L = {aibjck: i, j, k ≥ 0 and (i ≠≠≠≠ 1 or j = k)}

An Alternative

If L is regular, then so is LR:

LR = {ckbjai : i, j, k ≥ 0 and (i ≠ 1 or j = k)}

Use Pumping to show that L′ is not regular:

1/9/2012

8

Is English Regular?

Is English finite?

In the event that the Purchaser defaults in the payment of any installment of purchase price, taxes,

insurance, interest, or the annual charge described elsewhere herein, or shall default in the

performance of any other obligations set forth in this Contract, the Seller may: at his option: (a)

Declare immediately due and payable the entire unpaid balance of purchase price, with accrued

interest, taxes, and annual charge, and demand full payment thereof, and enforce conveyance of

the land by termination of the contract or according to the terms hereof, in which case the

Purchaser shall also be liable to the Seller for reasonable attorney's fees for services rendered by

any attorney on behalf of the Seller, or (b) sell said land and premises or any part thereof at public

auction, in such manner, at such time and place, upon such terms and conditions, and upon such

public notice as the Seller may deem best for the interest of all concerned, consisting of

advertisement in a newspaper of general circulation in the county or city in which the security

property is located at least once a week for Three (3) successive weeks or for such period as

applicable law may require and, in case of default of any purchaser, to re-sell with such

postponement of sale or resale and upon such public notice thereof as the Seller may determine,

and upon compliance by the Purchaser with the terms of sale, and upon judicial approval as may

be required by law, convey said land and premises in fee simple to and at the cost of the Purchaser,

who shall not be liable to see to the application of the purchase money; and from the proceeds of

the sale: First to pay all proper costs and charges, including but not limited to court costs,

advertising expenses, auctioneer's allowance, the expenses, if any required to correct any

irregularity in the title, premium for Seller's bond, auditor's fee, attorney's fee, and all other

expenses of sale occurred in and about the protection and execution of this contract, and all

moneys advanced for taxes, assessments, insurance, and with interest thereon as provided herein,

and all taxes due upon said land and premises at time of sale, and to retain as compensation a

commission of five percent (5%) on the amount of said sale or sales; SECOND, to pay the whole

amount then remaining unpaid of the principal of said contract, and interest thereon to date of

payment, whether the same shall be due or not, it being understood and agreed that upon such

sale before maturity of the contract the balance thereof shall be immediately due and payable;

THIRD, to pay liens of record against the security property according to their priority of lien and to

the extent that funds remaining in the hands of the Seller are available; and LAST, to pay the

remainder of said proceeds, if any, to the vendor, his heirs, personal representatives, successors or

assigns upon the delivery and surrender to the vendee of possession of the land and premises, less

costs and excess of obtaining possession.

1/9/2012

9

Is English Regular?

● The rat ran.

● The rat that the cat saw ran.

● The rat that the cat that the dog chased

saw ran.

Let:
A = {cat, rat, dog, bird, bug, pony}

V = {ran, saw, chased, flew, sang, frolicked}.

Let L = English ∩ {The A (that the A)* V* V}.

L = {The A (that the A)n Vn V, n ≥ 0}.

Let w = The cat (that the rat)k sawk ran.

Functions from one Language to
Another

Let firstchars(L) =
{w : ∃y∈L

(y = cx,
c ∈ ΣL,
x ∈ ΣL*, and
w ∈ c*)}

Are the regular languages closed under firstchars?

L firstchars(L)

∅

a*b*

ca*cb*

1/9/2012

10

Defining Functions from one
Language to Another

Let chop(L) =
{w : ∃x∈L

(x = x1cx2,
x1 ∈ ΣL*,
x2 ∈ ΣL*,
c ∈ ΣL,
|x1| = |x2|, and
w = x1x2)}

Are the regular languages closed under chop?

L chop(L)

∅

a*b*

a*db*

Recap: Give an English
description of the relationship
between chop(L) and L

Decision Procedures

A decision procedure is an algorithm whose result is a

Boolean value. It must:

●Halt

● Be correct

Important decision procedures exist for regular languages:

●Given an FSM M and a string s, does M accept s?

●Given a regular expression α and a string w, does α

generate w?

1/9/2012

11

Membership

We can answer the membership question by running an

FSM.

But we must be careful if it's an NDFSM:

Membership

decideFSM(M: FSM, w: string) =

If ndfsmsimulate(M, w) accepts then return True

else return False.

decideregex(α: regular expression, w: string) =

From α, use regextofsm to construct an FSM M

such that L(α) = L(M).

Return decideFSM(M, w).

Recall that ndfsmsimulate takes epsilon-closure at
every stage, so there is no danger of getting into an
infinite loop.

1/9/2012

12

Emptiness and Finiteness

●Given an FSM M, is L(M) empty?

●Given an FSM M, is L(M) = ΣM*?

●Given an FSM M, is L(M) finite?

●Given an FSM M, is L(M) infinite?

● Given two FSMs M1 and M2, are they equivalent?

Emptiness

• Given an FSM M, is L(M) empty?

• The simulation approach:

• The graph analysis approach:

1. Let M′ = ndfsmtodfsm(M).
2. For each string w in Σ* such that |w| < |KM′ | do:

Run decideFSM(M′, w).
3. If M′ accepts at least one such string, return False.

Else return True.

1. Mark all states that are reachable via some path from the
start state of M.

2. If at least one marked state is an accepting state, return False.
Else return True.

1/9/2012

13

Totality

• Given an FSM M, is L(M) = ΣM*?

Finiteness

• Given an FSM M, is L(M) finite?

• The graph analysis approach:

• The simulation approach

1/9/2012

14

Equivalence

●Given two FSMs M1 and M2, are they equivalent? In

other words, is L(M1) = L(M2)? We can describe two

different algorithms for answering this question.

Equivalence

●Given two FSMs M1 and M2, are they equivalent? In

other words, is L(M1) = L(M2)?

equalFSMs1(M1: FSM, M2: FSM) =
1. M1′ = buildFSMcanonicalform(M1).
2. M2′ = buildFSMcanonicalform(M2).
3. If M1′ and M2′ are equal, return True, else return False.

1/9/2012

15

Equivalence

●Given two FSMs M1 and M2, are they equivalent? In

other words, is L(M1) = L(M2)?

equalFSMs2(M1: FSM, M2: FSM) =

1. Construct MA to accept L(M1) - L(M2).
2. Construct MB to accept L(M2) - L(M1).
3. Construct MC to accept L(MA) ∪ L(MB).
4. Return emptyFSM(MC).

Observe that M1 and M2 are equivalent iff:

(L(M1) - L(M2)) ∪ (L(M2) - L(M1)) = ∅.

