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MA/CSSE 474
Theory of Computation

Regular and Non-regular Languages

Closure Properties

Pumping Theorem Intro

Languages: Regular or Not?

Recall: a*b* is regular.          {anbn: n ≥ 0} is not.

{w ∈ {a, b}* : every a is immediately followed by b} 

is regular.  

{w ∈ {a, b}* : every a has a matching b somewhere} 

is not.

How do we 

● show that a language is regular?

● show that a language is not regular?
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How many languages are there?

• Consider Σ = {a}.

• Clearly the set of languages over {a} is infinite.

• Suppose the set of languages over {a} was 

countable.

• Then we can enumerate all of the  languages as 

L0, L1, …, and every language appears in the 

list.

• Consider Ld = {ai : i ≥ 0 and ai ∉ Li}.

• Does Ld = Li for any  i ≥ 0?

How Many Regular Languages? 

Theorem: There is a countably infinite number of regular 

languages over any nonempty alphabet Σ.

Proof:

● Upper bound on number of regular languages: 

number of DFSMs (or regular expressions).

● Lower bound on number of regular languages: 

{a},{aa},{aaa},{aaaa},{aaaaa},{aaaaaa},… 

are all regular.  That set is countably infinite.  

Q1
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Are Regular or Nonregular 
Languages More Common? 

There is a countably infinite number of regular languages.

There is an uncountably infinite number of languages over 

any nonempty alphabet Σ.  

So there are many more nonregular languages than there 

are regular ones. 

Showing that a Language is Regular

Theorem: Every finite language L is regular.

Proof: If L is the empty set, then it is defined by the 

regular expression ∅ and so is regular.  

If L is a nonempty finite language, composed of the 

strings  s1, s2, … sn for some positive integer n, 

then it is defined by the regular expression:

s1 ∪ s2 ∪ … ∪ sn

So L is regular.  

Q2
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Finiteness - Theoretical vs. Practical

Any finite language is regular.  The size of the language doesn't 
matter.

Parity Soc. Sec. #
Checking Checking

But, from an implementation point of view, it very well may.

When is an FSM a good way to encode the facts about a 
language?

FSM’s are good at looking for repeating patterns.  They don't 
bring much to the table when the language is just a set of 
unrelated strings.

Regular Does Not Always Mean Tractable

Let Σ = {12, 13, 21, 23, 31, 32}.

Let L be the language of strings that correspond to 

successful move sequences.  The shortest string in L

has length 264 -1.

There is an FSM that accepts L:

Q3
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To Show that a Language L is Regular

We can do any of the following:

Construct a DFSM that accepts L.

Construct a NDFSM that accepts L.

Construct a regular expression that defines L.

Construct a regular grammar that generates L.

Show that there are finitely many equivalence classes 

under ≈L.

Show that L is finite.

Use one of the closure properties.

Closure Properties of Regular Languages

●Union

●Concatenation

● Kleene star

●Complement

● Intersection

●Difference

●Reverse

● Letter substitution 

The first three are easy:

definition of regular 

expressions.

We already did 

Complement and 

Reverse.

We'll do details of some 

of the others.
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Closure of Regular Languages 
Under Intersection

Write this in terms of operations we have already proved 

closure for:

●Union

●Concatenation

● Kleene star

●Complementation 

L1 ∩ L2 =          

L1 L2

Closure of Regular Languages 
Under Difference

L1 - L2 = L1 ∩ ¬L2
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Divide-and-Conquer

• L1 = {w ∈ {a, b}* : w contains an even number of a’s 

and an odd number of b’s}, and 

• L2 = {w ∈ {a, b}* : all a’s come in runs of three}

Let L = {w ∈ {a, b}* : w contains an even number of a’s 

and an odd number of b’s and all a’s come in runs of 

three}.  

L = L1 ∩ L2, where: 

L1 is Regular
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L2 is Regular

Don’t Try to Use Closure Backwards

One Closure Theorem:

If L1 and L2 are regular, then so is 

L = L1 ∩ L2

But if L is regular, what can we say about L1 and L2?

L = L1 ∩ L2

ab = ab ∩ (a ∪ b)* (they are regular)

ab = ab ∩ {anbn, n ≥ 0}     (they may not be regular)

Q4
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Don’t Try to Use Closure Backwards

Another Closure Theorem:

If L1 and L2 are regular, then so is 

L = L1 L2

But if L2 is not regular, what can we say about L?

L =    L1 L2

{abanbn : n ≥ 0} = {ab} {anbn : n ≥ 0} 

L(aaa*) = {a} *{ap: p is prime}

Showing that a Language is Not Regular

Every regular language can be accepted by some FSM.

It can only use a finite amount of memory to record 

essential properties.

Example:
{anbn, n ≥ 0} is not regular
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Showing that a Language is Not Regular

The only way to generate/accept an infinite language with 

a finite description is to use: 

• Kleene star (in regular expressions), or 

• cycles (in automata).  

This forces some kind of simple repetitive cycle within the 

strings.

Example:
ab*a generates aba, abba, abbba, abbbba, etc.

Example:
{an : n ≥ 1 is a prime number} is not regular. 

Exploiting the Repetitive Property

If an FSM with n states accepts at least one string of 

length ≥ n, how many strings does it accept?

L = bab*ab

b a b b b b a b

x y z

xy*z must be in L.

So L includes: baab, babab, babbab, babbbbbbbbbbab

Q5
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Theorem – Long Strings

Theorem: Let M = (K, Σ, δ, s, A) be any DFSM.  If M

accepts any string of length |K| or greater, then that string 

will force M to visit some state more than once (thus 

traversing at least one loop).  

Proof: M must start in one of its states.  

Each time it reads an input character, it visits some state.  

So, in processing a string of length n, M does a total of 

n + 1 state visits.  

If n+1 > |K|, then, by the pigeonhole principle, some state 

must get more than one visit.  

So, if n ≥ |K|, then M must visit at least one state more 

than once.  

The Pumping Theorem* for Regular Languages

If L is regular, then every long string in L is "pumpable".  

Formally, if L is regular, then 

So, ∃k ≥ 1 such that

(∀ strings w ∈ L, where |w| ≥ k

(∃ x, y, z (w = xyz,

|xy| ≤ k,

y ≠ ε, and

∀q ≥ 0 (xyqz is in L))))

* a.k.a. "the pumping lemma".  

We will use the terms interchangeably.

Q6-7
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Using The Pumping Theorem to show that 

L is not Regular:

We use the contrapositive of the theorem: 

If some long enough string in L is not "pumpable", 

then L is not regular. 

What we need to show in order to show L non-regular:

∀k ≥ 1 

(∃ string w ∈ L, where |w| ≥ k

(∀ x, y, z (w = xyz,

|xy| ≤ k,

y ≠ ε, and

∃ q ≥ 0 (xyqz is not in L)))).

Before next class:  
Be sure that you are 
convinced that this 
really is the negation 
of the conclusion of 
the pumping theorem.  

A way to think of it: adversary argument

(following J.E. Hopcroft and J.D.Ullman) 

1. Choose the language L you want to prove non-
regular.

2. The "adversary" picks  k, the constant mentioned in 
the theorem.  We must be prepared for any positive 
integer to be picked, but once it is chosen, the 
adversary cannot change it.

3. We select a string w∈L that cannot be "pumped".
4. The adversary breaks w into w=xyz, subject to the 

constraints |xy| ≤ k and y ≠ ε.  Our choice of w must 
take into account that any such x and y can be 
chosen.

5. All we must do is  produce a single number q≥0 such 
that xyqz ∉L.

Note carefully what we get to choose and 
what we do not get to choose.
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Example: {anbn: n ≥≥≥≥ 0} is not Regular
k is the number from the Pumping Theorem.
We don't get to choose it.

Choose w to be ak/2bk/2 (“long enough”).

1                               2
a a a a a … a a a a a b b b b  … b b b b b b

x y z

Adversary chooses  x, y, z with the required properties:
|xy| ≤ k, 
y ≠ ε,
∀ q ≥ 0 (xyqz is in L).

Three cases to consider:
● y entirely in region 1:

● y partly in region 1 and partly in 2:

● y entirely in region 2: 

A Complete Proof
We prove that L = {anbn: n ≥ 0} is not regular

If L were regular, then there would exist some k such that any string w where 
|w| ≥ k must satisfy the conditions of the theorem.  Let w = ak/2bk/2.  

Since |w| ≥ k, w must satisfy the conditions of the pumping theorem.  So, 
for some x, y, and z, w = xyz, |xy| ≤ k, y ≠ ε, and ∀q ≥ 0, xyqz is in L.  We 
show that no such x, y, and z exist.  There are 3 cases for where y could 
occur:  We divide w into two regions:

aaaaa…..aaaaaa | bbbbb…..bbbbbb

1            |              2                

So y can fall in:
● (1):  y = ap for some p.  Since y ≠ ε, p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.    

● (2):  y = bp for some p.  Since y ≠ ε, p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no pumpable  x, y, z exist.  So L is 
not regular.
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What You Need to Write
We prove that L = {anbn: n ≥ 0} is not regular

Let w = ak/2bk/2.  (If not completely obvious, as in this case, show that w is in 

fact in L.)

There are 3 cases for where y could occur: 

aaaaa…..aaaaaa | bbbbb…..bbbbbb

1            |              2                

So y can fall in:
● (1):  y = ap for some p.  Since y ≠ ε, p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.  .  

● (2):  y = bp for some p.  Since y ≠ ε, p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

Thus L is not regular.

A better choice for w 

Second try.  A choice of w that makes it easier:

Choose w to be akbk

(We get to choose any w whose length is at least k).

1                               2
a a a a a … a a a a a b b b b  … b b b b b b

x y z

We show that there is no x, y, z with the required properties:
|xy| ≤ k, 
y ≠ ε,
∀ q ≥ 0 (xyqz is in L).

Since |xy| ≤ k, y must be in region 1.  So y = ap for some p ≥ 1.  

Let q = 2, producing:

ak+pbk

which ∉ L, since it has more a’s than b’s.

We only have to find 
one q that takes us 
outside of L.
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Recap: Using the Pumping Theorem

If L is regular, then every “long” string in L is pumpable.

To show that L is not regular, we find one that isn’t.

To use the Pumping Theorem to show that a language L is 

not regular, we must:

1. Choose a string w where |w| ≥ k. Since we do not know 

what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of equivalence 

classes that can be considered together. 

3. For each such class of possible y values where |xy| ≤ k

and y ≠ ε:

Choose a value for q such that xyqz is not in L. 


