Kleene's Theorem

Finite state machines and regular expressions define the same class of languages.

To prove this, we must show:
Theorem: Any language that can be defined by a regular expression can be accepted by some FSM and so is regular.

Theorem: Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a regular expression.

For Every Regular Expression There is a Corresponding FSM

We'll show this by construction. An FSM for:
$\varnothing:$

A single element of Σ :

$\varepsilon\left(\varnothing^{*}\right):$

Concatenation

If α is the regular expression $\beta \gamma$ and if both $L(\beta)$ and $L(\gamma)$ are regular:

An Example

$(b \cup a b)^{*}$

An FSM for b
An FSM for a
An FSM for b

An FSM for ab:

An Example

$(b \cup a b)^{*}$

An FSM for $(b \cup a b)^{*}$:

The Algorithm regextofsm

regextofsm(α : regular expression) =
Beginning with the primitive subexpressions of α and working outwards until an FSM for all of α has been built do:

Construct an FSM as described above.

For Every FSM There is a Corresponding Regular Expression

- We'll show this by construction.

The construction is different than the textbook's.

- Let $\mathrm{M}=\left(\left\{\mathrm{q}_{1}, \ldots, \mathrm{q}_{n}\right\}, \Sigma, \delta, \mathrm{q}_{1}, A\right)$ be a DFSM.

Define $\mathrm{R}_{\mathrm{ijk}}$ to be the set of all strings $x \in \Sigma^{*}$ such that

- $\left(q_{i}, x\right) \mid-M^{*}\left(q_{j}, \varepsilon\right)$, and
- if $\left(q_{i}, y\right) \mid-M^{*}\left(q_{\ell}, \varepsilon\right)$, for any prefix y of x (except $\mathrm{y}=\varepsilon$ and $\mathrm{y}=\mathrm{x}$), then $\ell \leq \mathrm{k}$
- That is, $\mathrm{R}_{\mathrm{ijk}}$ is the set of all strings that take us from q_{i} to q_{j} without passing through any intermediate states numbered higher than k .
- In this case, "passing through" means both entering and leaving.
- Note that either i or j (or both) may be greater than k .

DFA \rightarrow Reg. Exp. construction

- R_{ijk} is the set of all strings that take M from q_{i} to q_{j} without passing through any intermediate states numbered higher than k .
Examples: $\mathrm{R}_{\mathrm{ijn}}$ is
Also note that $L(M)$ is the union of $R_{1 \mathrm{j} \text { 仡 }}$ over all q_{j} in A.
- We will show that for all $\mathrm{i}, \mathrm{j} \in\{1, \ldots, \mathrm{n}\}$ and all $k \in\{0, \ldots, n\}, R_{i j k}$ is defined by a regular expression.
- We already know that the union of languages defined by reg. exps. is defined by a reg. exp.

DFA \rightarrow Reg. Exp. continued

$R_{i j k}$ is the set of all strings that take M from q_{i} to q_{j} without passing through any intermediate states numbered higher than k .
It can be computed recursively:

- Base cases $(k=0)$:
- If $i \neq j, R_{i j 0}=\left\{a \in \Sigma: \delta\left(q_{i}, a\right)=q_{j}\right\}$
- If $i=j, R_{\text {iio }}=\left\{a \in \Sigma: \delta\left(q_{i}, a\right)=q_{i}\right\} \cup\{\varepsilon\}$

Recursive case ($k>0$): $R_{i j k}$ is $R_{i j k-1} \cup R_{i k k-1}\left(R_{k k k-1}\right)^{\star} R_{\text {kjk-1 }}$
We show by induction that each $R_{i j k}$ is defined by some regular expression $r_{\text {ijk }}$.

DFA \rightarrow Reg. Exp. Proof pt. 1

Base case definition ($\mathrm{k}=0$):

- If $i \neq j, R_{i j 0}=\left\{a \in \Sigma: \delta\left(q_{i}, a\right)=q_{j}\right\}$
- If $i=j, R_{\text {iio }}=\left\{a \in \Sigma: \delta\left(q_{i}, a\right)=q_{i j} \cup\{\varepsilon\}\right.$

Base case proof:

$R_{\mathrm{ij} 0}$ is a finite set of symbols, each of which is either ε or a single symbol from Σ.
So $R_{i j 0}$ can be defined by the reg. exp.
$r_{\text {ijo }}=a_{1} \cup a_{2} \cup \ldots \cup a_{p}\left(\right.$ or $a_{1} \cup a_{2} \cup \ldots \cup a_{p} \cup \varepsilon$ if $\left.i=j\right)$,
where $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ is the set of all symbols a such that $\delta\left(q_{i}, a\right)=q_{j}$.
Note that if M has no direct transitions from q_{i} to q_{j}, then $r_{i j 0}$ is \varnothing (it is ε if $i=j$).

DFA \rightarrow Reg. Exp. Proof pt. 2

5 Recursive definition ($\mathrm{k}>0$):

$$
R_{i j k} \text { is } R_{i j k-1} \cup R_{i k k-1}\left(R_{k k k-1}\right)^{*} R_{k j k-1}
$$

Induction hypothesis: For each ℓ and m, there is a regular expression $r_{\ell m k-1}$ such that $L\left(r_{\ell m k-1}\right)=R_{\ell m k-1}$.

- Induction step. By the recursive parts of the definition of regular expressions and the languages they define, and by the above recursive defintion of $R_{i j k}$:
$R_{\mathrm{ijk}}=\mathrm{L}\left(\mathrm{r}_{\mathrm{ijk}-1} \cup \mathrm{r}_{\mathrm{ikk}-1}\left(\mathrm{r}_{\mathrm{kkk}-1}\right)^{*} \mathrm{r}_{\mathrm{kjk}-1}\right)$

DFA \rightarrow Reg. Exp. Proof pt. 3

- We showed by induction that each R_{ijk} is defined by some regular expression r_{ijk}. In particular, for all $q_{j} \in A$, there is a regular expression $r_{1, \mathrm{n}}$ that defines $\mathrm{R}_{1 \mathrm{j} \mathrm{n}}$.

Then $L(M)=L\left(r_{1_{1,1}} \cup \ldots \cup r_{1 j_{p} n}\right)$,
where $A=\left\{q_{j 1}, \ldots, q_{j p}\right\}$

A Special Case of Suppose that we want to match of a set of keywords. Then expression of the form: $\left(\Sigma^{*}\left(k_{1} \cup k_{2} \cup \ldots \cup k_{n}\right) \Sigma^{*}\right)^{+}$

For example, suppose we want to match:

$$
\begin{gathered}
\Sigma^{*} \text { finite state machine } \cup \\
\text { FSM } \cup \text { finite state automaton } \Sigma^{*}
\end{gathered}
$$

We can use regextofsm to build an FSM. But ...
We can instead use buildkeywordFSM.

\{cat, bat, cab\}

The single keyword cat:

\{cat, bat, cab\}

Adding bat:

Syntax	Name	Description
$a b c$	Concatenation	Matches a, then b, then c, where a, b, and c are any regexs
$a\|b\| c$	Union (Or)	Matches a or b or c, where a, b, and c are any regexs
a^{*}	Kleene star	Matches 0 or more a 's, where a is any regex
$a+$	At least one	Matches 1 or more a 's, where a is any regex
a ?		Matches 0 or $1 a$'s, where a is any regex
$a\{n, m\}$	Replication	Matches at least n but no more than $m a$'s, where a is any regex
a^{*} ?	Parsimonious	Turns off greedy matching so the shortest match is selected
$a+$?	"	"
.	Wild card	Matches any character except newline
\wedge	Left anchor	Anchors the match to the beginning of a line or string
\$	Right anchor	Anchors the match to the end of a line or string
[a-z]		Assuming a collating sequence, matches any single character in range
[^$a-z]$		Assuming a collating sequence, matches any single character not in range
ld	Digit	Matches any single digit, i.e., string in [0-9]
ID	Nondigit	Matches any single nondigit character, i.e., [^0-9]
Iw	Alphanumeric	Matches any single "word" character, i.e., [a-zA-Z0-9]
\W	Nonalphanumeric	Matches any character in [^a-zA-Z0-9]
Is	White space	Matches any character in [space, tab, newline, etc.]

[^0]
[^0]: pos

 Natron

 ## Simplifying Regular Expressions

 Regex's describe sets:

 - Union is commutative: $\alpha \cup \beta=\beta \cup \alpha$.
 - Union is associative: $(\alpha \cup \beta) \cup \gamma=\alpha \cup(\beta \cup \gamma)$.
 - \varnothing is the identity for union: $\alpha \cup \varnothing=\varnothing \cup \alpha=\alpha$.
 - Union is idempotent: $\alpha \cup \alpha=\alpha$.

 Concatenation:

 - Concatenation is associative: $(\alpha \beta) \gamma=\alpha(\beta \gamma)$.
 - ε is the identity for concatenation: $\alpha \varepsilon=\varepsilon \alpha=\alpha$.
 - \varnothing is a zero for concatenation: $\alpha \varnothing=\varnothing \alpha=\varnothing$.

 Concatenation distributes over union:

 - $(\alpha \cup \beta) \gamma=(\alpha \gamma) \cup(\beta \gamma)$.
 - $\gamma(\alpha \cup \beta)=(\gamma \alpha) \cup(\gamma \beta)$.

 Kleene star:

 - $\varnothing^{*}=\varepsilon$.
 - $\varepsilon^{*}=\varepsilon$.
 - $\left(\alpha^{*}\right)^{*}=\alpha^{*}$.
 - $\alpha^{*} \alpha^{*}=\alpha^{*}$.
 $\bullet(\alpha \cup \beta)^{*}=\left(\alpha^{*} \beta^{*}\right)^{*}$.

