
12/20/2011

1

MA/CSSE 474
Theory of Computation

Kleene's Theorem

Practical Regular Expressions

Kleene’s Theorem

Finite state machines and regular expressions define

the same class of languages.

To prove this, we must show:

Theorem: Any language that can be defined by a

regular expression can be accepted by some FSM

and so is regular.

Theorem: Every regular language (i.e., every language

that can be accepted by some DFSM) can be

defined with a regular expression.

Q1

12/20/2011

2

For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:

A single element of Σ:

ε (∅*):

Q2

Union

If α is the regular expression β ∪ γ and if both L(β) and

L(γ) are regular:

12/20/2011

3

Concatenation

If α is the regular expression βγ and if both L(β) and L(γ)

are regular:

Kleene Star

If α is the regular expression β* and if L(β) is regular:

12/20/2011

4

An Example

(b ∪ ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

An Example

(b ∪ ab)*

An FSM for (b ∪ ab):

12/20/2011

5

An Example

(b ∪ ab)*

An FSM for (b ∪ ab)*:

The Algorithm regextofsm

regextofsm(α: regular expression) =

Beginning with the primitive subexpressions of α and

working outwards until an FSM for all of α has been

built do:

Construct an FSM as described above.

12/20/2011

6

For Every FSM There is a
Corresponding Regular Expression

• We’ll show this by construction.

The construction is different than the textbook's.

• Let M = ({q1, …, qn}, Σ, δ, q1, A) be a DFSM.

Define Rijk to be the set of all strings x ∈ Σ* such that

• (qi,x) |-M (qj, ε), and

• if (qi,y) |-M (q
ℓ
, ε), for any prefix y of x

(except y= ε and y=x), then ℓ ≤ k

• That is, Rijk is the set of all strings that take us from qi to

qj without passing through any intermediate states

numbered higher than k.

• In this case, "passing through" means both entering

and leaving.

• Note that either i or j (or both) may be greater than k.

*

*

DFA����Reg. Exp. construction
• Rijk is the set of all strings that take M from qi

to qj without passing through any
intermediate states numbered higher than k.

• Examples: Rijn is

• Also note that L(M) is the union of R1jn over
all qj in A.

• We will show that for all i,j∈{1, …, n} and
all k ∈{0, …, n}, Rijk is defined by a regular
expression.

– We already know that the union of languages

defined by reg. exps. is defined by a reg. exp.

12/20/2011

7

DFA����Reg. Exp. continued
• Rijk is the set of all strings that take M from qi to qj without

passing through any intermediate states numbered higher

than k.

It can be computed recursively:

• Base cases (k = 0):

– If i ≠ j, Rij0 = {a∈Σ : δ(qi, a) = qj}

– If i = j, Rii0 = {a∈Σ : δ(qi, a) = qi} ∪ {ε}

• Recursive case (k > 0):
Rijk is Rijk-1 ∪ Rikk-1(Rkkk-1)*Rkjk-1

• We show by induction that each Rijk is
defined by some regular expression rijk.

DFA����Reg. Exp. Proof pt. 1

• Base case definition (k = 0):
– If i ≠ j, Rij0 = {a∈Σ : δ(qi, a) = qj}

– If i = j, Rii0 = {a∈Σ : δ(qi, a) = qi} ∪ {ε}

• Base case proof:

Rij0 is a finite set of symbols, each of which is either ε
or a single symbol from Σ.

So Rij0 can be defined by the reg. exp.
rij0 = a1∪a2∪…∪ap (or a1∪a2∪…∪ap∪ε if i=j),

where {a1, a2, …,ap} is the set of all symbols a such
that δ(qi, a) = qj.

• Note that if M has no direct transitions from qi to qj,
then rij0 is ∅ (it is ε if i=j).

12/20/2011

8

DFA����Reg. Exp. Proof pt. 2

• Recursive definition (k > 0):
Rijk is Rijk-1 ∪ Rikk-1(Rkkk-1)*Rkjk-1

• Induction hypothesis: For each ℓ and �,
there is a regular expression r

ℓ�k-1 such that
L(r

ℓ�k-1)= R
ℓ�k-1.

• Induction step. By the recursive parts of the
definition of regular expressions and the
languages they define, and by the above
recursive defintion of Rijk :
Rijk = L(rijk-1 ∪ rikk-1(rkkk-1)*rkjk-1)

DFA����Reg. Exp. Proof pt. 3

• We showed by induction that each Rijk is
defined by some regular expression rijk.

• In particular, for all qj∈A, there is a regular
expression r1jn that defines R1jn.

• Then L(M) = L(r1j1n ∪ … ∪r1jpn),

where A = {qj1
, …, qjp

}

12/20/2011

9

An Example
Start q1 q2 q3

0

0
1

1

0,1

k=0 k=1 k=2

r11k ε ε (00)*

r12k 0 0 0(00)*

r13k 1 1 0*1

r21k 0 0 0(00)*

r22k ε ε ∪ 00 (00)*

r23k 1 1 ∪ 01 0*1

r31k ∅ ∅ (0 ∪ 1)(00)*0

r32k 0 ∪ 1 0 ∪ 1 (0 ∪ 1)(00)*

r33k ε ε ε ∪(0 ∪ 1)0*1
Q3

A Special Case of Pattern Matching

Suppose that we want to match a pattern that is composed

of a set of keywords. Then we can write a regular

expression of the form:

(Σ* (k1 ∪ k2 ∪ … ∪ kn) Σ*)+

For example, suppose we want to match:

Σ* finite state machine ∪
FSM ∪ finite state automatonΣ*

We can use regextofsm to build an FSM. But …

We can instead use buildkeywordFSM.

12/20/2011

10

{cat, bat, cab}

The single keyword cat:

{cat, bat, cab}

Adding bat:

12/20/2011

11

{cat, bat, cab}

Add

transitions

for when a

branch dies

because

the next

character is

not the

correct one

to continue

the pattern.

Regular Expressions in Perl
Syntax Name Description

abc Concatenation Matches a, then b, then c, where a, b, and c are any regexs

a | b | c Union (Or) Matches a or b or c, where a, b, and c are any regexs

a* Kleene star Matches 0 or more a’s, where a is any regex

a+ At least one Matches 1 or more a’s, where a is any regex

a? Matches 0 or 1 a’s, where a is any regex

a{n, m} Replication Matches at least n but no more than m a’s, where a is any regex

a*? Parsimonious Turns off greedy matching so the shortest match is selected

a+? ″ ″

. Wild card Matches any character except newline

^ Left anchor Anchors the match to the beginning of a line or string

$ Right anchor Anchors the match to the end of a line or string

[a-z] Assuming a collating sequence, matches any single character in range

[^a-z] Assuming a collating sequence, matches any single character not in range

\d Digit Matches any single digit, i.e., string in [0-9]

\D Nondigit Matches any single nondigit character, i.e., [^0-9]

\w Alphanumeric Matches any single “word” character, i.e., [a-zA-Z0-9]

\W Nonalphanumeric Matches any character in [^a-zA-Z0-9]

\s White space Matches any character in [space, tab, newline, etc.]

12/20/2011

12

Syntax Name Description

\S Nonwhite space Matches any character not matched by \s

\n Newline Matches newline

\r Return Matches return

\t Tab Matches tab

\f Formfeed Matches formfeed

\b Backspace Matches backspace inside []

\b Word boundary Matches a word boundary outside []

\B Nonword boundary Matches a non-word boundary

\0 Null Matches a null character

\nnn Octal Matches an ASCII character with octal value nnn

\xnn Hexadecimal Matches an ASCII character with hexadecimal value nn

\cX Control Matches an ASCII control character

\char Quote Matches char; used to quote symbols such as . and \

(a) Store Matches a, where a is any regex, and stores the matched string in the next variable

\1 Variable Matches whatever the first parenthesized expression matched

\2 Matches whatever the second parenthesized expression matched

… For all remaining variables

Regular Expressions in Perl

Simplifying Regular Expressions

Regex’s describe sets:

● Union is commutative: α ∪ β = β ∪ α.
● Union is associative: (α ∪ β) ∪ γ = α ∪ (β ∪ γ).
● ∅ is the identity for union: α ∪ ∅ = ∅ ∪ α = α.
● Union is idempotent: α ∪ α = α.

Concatenation:

● Concatenation is associative: (αβ)γ = α(βγ).
● ε is the identity for concatenation: α ε = ε α = α.
● ∅ is a zero for concatenation: α ∅ = ∅ α = ∅.

Concatenation distributes over union:

● (α ∪ β) γ = (α γ) ∪ (β γ).
● γ (α ∪ β) = (γ α) ∪ (γ β).

Kleene star:

● ∅* = ε.
● ε* = ε.
●(α*)* = α*.
● α*α* = α*.
●(α ∪ β)* = (α*β*)*.

