Slide 11: For Every FSM There is a Corresponding Regular Expression
I do this construction because I think every math or CS major should see this kind of dynamic programming algorithm, and there is no required course that does it.

Another algorithm that uses a similar approach is the Floyd-Warshall "all-pairs shortest paths algorithm", which solves a problem) in n 3 time that at first seems like it must be $\mathrm{O}(\mathrm{n} 4)$.

Write "Floyd-Warshall" on the board.

Slide 12: DFA \rightarrow Reg. Exp. construction

$R_{i j 0}$ is $\left\{a\right.$ in Sigma : $\operatorname{delta}\left(q_{i}, a\right)=q_{j}$. This set has one or zero elements.
$R_{i j o}$ is set of all strings that take M from q_{i} to q_{j}, because all states are numbered $\leq n$.

Slide 13: DFA \rightarrow Reg. Exp. continued

Recursive case: if a string is in $R_{i j \mathrm{ijk}}$, it either
takes us form state i to state j without passing through state k, or
it does pass through k. It takes us to k for the first time, possibly does some loops that pass through k, then goes to j .

Slide 17: An Example

Look quickly at the $\mathrm{k}=0$ cases.
Tell students that for practice they should look at some of the others that we do not do together.
Look together at these examples:
$r_{221}=r_{220} \cup r_{210}\left(r_{110}\right) * r_{120}=\varepsilon \cup 0(\varepsilon) * 0==\varepsilon \cup 00$
$r_{132}=r_{131} \cup r_{121}\left(r_{221}\right)^{*} r_{231}=1 \cup 0(\varepsilon \cup 00)^{*}(1 \cup 01)=1 \cup 0(00)^{*}(\varepsilon \cup 0) 1$.
Note that $0(00)^{*}(\varepsilon \cup 0)$ is equivalent to 0^{*}, so we get $1 \cup 0^{*} 1$ which is equivalent to $0^{*} 1$.
Have students (on the quiz) do r123 and r133 and simplify them. Compare notes with another student.
$r_{123}=r_{122} \cup r_{132}\left(r_{332}\right)^{*} r_{322}=0(00)^{*} \cup 0^{*} 1\left(\varepsilon \cup(0 \cup 1) 0^{*} 1\right)^{*}(0 \cup 1)(00)^{*}=0(00)^{*} \cup 0^{*} 1\left((0 \cup 1) 0^{*} 1\right)^{*}(0 \cup 1)(00)^{*}$
$r_{133}=r_{132} \cup r_{132}\left(r_{332}\right) * r_{332}=0 * 1 \cup 0 * 1\left(\varepsilon \cup(0 \cup 1) 0^{*} 1\right)^{*}\left(\varepsilon \cup(0 \cup 1) 0^{*} 1=0 * 1\left((0 \cup 1) 0^{*} 1\right)^{*}\right.$
For the entire machine we get $r_{123} \cup r_{133}=0(00)^{*} \cup 0^{*} 1\left((0 \cup 1) 0^{*} 1\right)^{*}\left(\varepsilon \cup(0 \cup 1)(00)^{*}\right)$

