
6/20/2012

1

MA/CSSE 474
Theory of Computation

Regular Expressions

Questions?

• Homework

• Tomorrow's Exam material
(no NFA->DFA proof on this exam)

• Reading

• Anything else

6/20/2012

2

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence
classes of ≈L is finite.

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is

finite: If L is regular, then there exists some FSM M that
accepts L. M has some finite number of states m. The
cardinality of ≈L ≤ m. So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L

regular: If the cardinality of ≈L is finite, then the construction
that was described in the proof of the previous theorem will
build an FSM that accepts L. So L must be regular.

Q1

Summary

● Given any regular language L, there exists a

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm

minDFSM that constructs a minimal DFSM

that also accepts L(M).

6/20/2012

3

Canonical Forms

A canonical form for some set of objects C assigns

exactly one representation to each class of “equivalent”

objects in C.

Further, each such representation is distinct, so two

objects in C share the same representation iff they are

“equivalent” in the sense for which we define the form.

A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) =

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).
3. Create a unique assignment of names to the

states of M*.

4. Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1)

=

buildFSMcanonicalform(M2)

iff L(M1) = L(M2).

6/20/2012

4

Regular Languages

Regular

Language

Regular Expression

Finite State

Machine

Describes

Accepts

Regular Expressions

The regular expressions over an alphabet Σ are the

strings that can be obtained as follows:

1. ∅ is a regular expression.

2. ε is a regular expression.

3. Every element of Σ is a regular expression.

4. If α , β are regular expressions, then so is αβ.

5. If α , β are regular expressions, then so is α∪β.

6. If α is a regular expression, then so is α*.

7. α is a regular expression, then so is α+.

8. If α is a regular expression, then so is (α).

6/20/2012

5

Regular Expression Examples

If Σ = {a, b}, the following are regular expressions:

∅
ε
a

(a ∪ b)*

abba ∪ ε

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular

expressions (Let α and β be arbitrary regular

expressions over alphabet Σ.

1. L(∅) = ∅.

2. L(ε) = {ε}.

3. If c ∈ Σ , L(c) = {c}.

4. L(αβ) = L(α) L(β).

5. L(α ∪ β) = L(α) ∪ L(β).

6. L(α*) = (L(α))*.

7. L(α+) = L(αα*) = L(α) (L(α))*. If L(α) is equal to ∅, then

L(α+) is also equal to ∅. Otherwise L(α+) is the

language that is formed by concatenating together one

or more strings drawn from L(α).

8. L((α)) = L(α).

6/20/2012

6

The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its power to

define sets.

• Rule 8 has as its only role grouping other operators.

• Rules 2 and 7 appear to add functionality to the

regular expression language, but they don’t.

2. ε is a regular expression.

7. α is a regular expression, then so is α+.

Q2

Operator Precedence in Regular Expressions

Regular Arithmetic
Expressions Expressions

Highest Kleene star exponentiation

concatenation multiplication

Lowest union addition

a b* ∪ c d* x y2 + i j2

6/20/2012

7

Analyzing a Regular Expression

L((a ∪ b)*b) = L((a ∪ b)*) L(b)

= (L((a ∪ b)))* L(b)

= (L(a) ∪ L(b))* L(b)

= ({a} ∪ {b})* {b}

= {a, b}* {b}.

Examples

L(a*b*) =

L((a ∪ b)*) =

L((a ∪ b)*a*b*) =

L((a ∪ b)*abba(a ∪ b)*) =

6/20/2012

8

Going the Other Way

L = {w ∈ {a, b}*: |w| is even}

L = {w ∈ {0, 1}*: w is a binary representation of a

multiple of 4}

L = {w ∈ {a, b}*: w contains an odd number of a’s}

Q3-5

Hidden: Going the Other Way

L = {w ∈ {a, b}*: |w| is even}

(a ∪ b) (a ∪ b))*

(aa ∪ ab ∪ ba ∪ bb)*

L = {w ∈ {0, 1}*: w is a binary representation of a

multiple of 4}

0 ∪ 1(0 ∪ 1)*00

L = {w ∈ {a, b}*: w contains an odd number of a’s}

b* (ab*ab*)* a b*

b* a b* (ab*ab*)*

6/20/2012

9

The Details Matter

a* ∪ b* ≠ (a ∪ b)*

(ab)* ≠ a*b*

More Regular Expression Examples

L ((aa*) ∪ ε) =

L ((a ∪ ε)*) =

L = {w ∈ {a, b}*: there is no more than one b in w}

L = {w ∈ {a, b}* : no two consecutive letters in w are the

same}

Q6-7

6/20/2012

10

The Details Matter

L1 = {w ∈ {a, b}* : every a is immediately followed a b}

A regular expression for L1:

A FSM for L1:

L2 = {w ∈ {a, b}* : every a has a matching b somewhere}

A regular expression for L2:

A FSM for L2:

Kleene’s Theorem

Finite state machines and regular expressions define

the same class of languages.

To prove this, we must show:

Theorem: Any language that can be defined by a

regular expression can be accepted by some FSM

and so is regular.

Theorem: Every regular language (i.e., every language

that can be accepted by some DFSM) can be

defined with a regular expression.

6/20/2012

11

For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:

A single element of Σ:

ε (∅*):

Union

If α is the regular expression β ∪ γ and if both L(β) and

L(γ) are regular:

6/20/2012

12

Concatenation

If α is the regular expression βγ and if both L(β) and L(γ)

are regular:

Kleene Star

If α is the regular expression β* and if L(β) is regular:

6/20/2012

13

An Example

(b ∪ ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

An Example

(b ∪ ab)*

An FSM for (b ∪ ab):

6/20/2012

14

An Example

(b ∪ ab)*

An FSM for (b ∪ ab)*:

