

## Questions?

- Tomorrow's Exam material
(no NFA->DFA proof on this exam)
Reading
- Anything else


## The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence classes of $\approx_{L}$ is finite.

Proof: Show the two directions of the implication:
$L$ regular $\rightarrow$ the number of equivalence classes of $\approx_{L}$ is finite: If $L$ is regular, then there exists some FSM $M$ that accepts $L$. $M$ has some finite number of states $m$. The cardinality of $\approx_{L} \leq m$. So the cardinality of $\approx_{L}$ is finite.

The number of equivalence classes of $\approx_{L}$ is finite $\rightarrow L$ regular: If the cardinality of $\approx_{L}$ is finite, then the construction that was described in the proof of the previous theorem will build an FSM that accepts $L$. So $L$ must be regular.

## Summary

- Given any regular language $L$, there exists a minimal DFSM $M$ that accepts $L$.
- $M$ is unique up to the naming of its states.
- Given any DFSM M, there exists an algorithm $\min D F S M$ that constructs a minimal DFSM that also accepts $L(M)$.


## Canonical Forms

A canonical form for some set of objects $C$ assigns exactly one representation to each class of "equivalent" objects in $C$.

Further, each such representation is distinct, so two objects in $C$ share the same representation iff they are "equivalent" in the sense for which we define the form.

## A Canonical Form for FSMs

buildFSMcanonicalform(M: FSM) =

1. $M^{\prime}=n d f s m t o d f s m(M)$.
2. $M^{*}=\min D F S M\left(M^{*}\right)$.
3. Create a unique assignment of names to the states of $M^{*}$.
4. Return $M^{*}$.

Given two FSMs $M_{1}$ and $M_{2}$ :
buildFSMcanonicalform $\left(M_{1}\right)$
=
buildFSMcanonicalform $\left(M_{2}\right)$
iff $L\left(M_{1}\right)=L\left(M_{2}\right)$.


## Regular Expressions

The regular expressions over an alphabet $\Sigma$ are the strings that can be obtained as follows:

1. $\varnothing$ is a regular expression.
2. $\varepsilon$ is a regular expression.
3. Every element of $\Sigma$ is a regular expression.
4. If $\alpha, \beta$ are regular expressions, then so is $\alpha \beta$.
5. If $\alpha, \beta$ are regular expressions, then so is $\alpha \cup \beta$.
6. If $\alpha$ is a regular expression, then so is $\alpha^{*}$.
7. $\alpha$ is a regular expression, then so is $\alpha^{+}$.
8. If $\alpha$ is a regular expression, then so is ( $\alpha$ ).

## Regular Expression Examples

If $\Sigma=\{a, b\}$, the following are regular expressions:

```
\(\varnothing\)
\(\varepsilon\)
a
\((\mathrm{a} \cup \mathrm{b})^{*}\)
\(a b b a \cup \varepsilon\)
```


## Regular Expressions Define Languages

Define $L$, a semantic interpretation function for regular expressions (Let $\alpha$ and $\beta$ be arbitrary regular expressions over alphabet $\Sigma$.

1. $L(\varnothing)=\varnothing$.
2. $L(\varepsilon)=\{\varepsilon\}$.
3. If $c \in \Sigma, L(c)=\{c\}$.
4. $L(\alpha \beta)=L(\alpha) L(\beta)$.
5. $L(\alpha \cup \beta)=L(\alpha) \cup L(\beta)$.
6. $L\left(\alpha^{*}\right)=(L(\alpha))^{*}$.
7. $L\left(\alpha^{+}\right)=L\left(\alpha \alpha^{*}\right)=L(\alpha)(L(\alpha))^{*}$. If $L(\alpha)$ is equal to $\varnothing$, then $L\left(\alpha^{+}\right)$is also equal to $\varnothing$. Otherwise $L\left(\alpha^{+}\right)$is the language that is formed by concatenating together one or more strings drawn from $L(\alpha)$.
8. $L((\alpha))=L(\alpha)$.

## The Role of the Rules

- Rules $1,3,4,5$, and 6 give the language its power to define sets.
- Rule 8 has as its only role grouping other operators.
- Rules 2 and 7 appear to add functionality to the regular expression language, but they don't.

2. $\varepsilon$ is a regular expression.
3. $\alpha$ is a regular expression, then so is $\alpha^{+}$.
Operator Precedence in Regular Expressions
Regular
Expressions
Arithmetic Expressions
Highest
Kleene star
concatenation
exponentiation
multiplication
Lowest
union
 addition
$x y^{2}+i j^{2}$

## Analyzing a Regular Expression

$$
\begin{aligned}
L\left((a \cup b)^{*} b\right) & =L\left((a \cup b)^{*}\right) L(b) \\
& =(L((a \cup b)))^{*} L(b) \\
& =(L(a) \cup L(b))^{*} L(b) \\
& =(\{a\} \cup\{b\})^{*}\{b\} \\
& =\{a, b\}^{*}\{b\} .
\end{aligned}
$$

## Examples

$L\left(a^{*} b^{*}\right)=$
$L\left((a \cup b)^{*}\right)=$
$L\left((a \cup b)^{*} a^{*} b^{*}\right)=$
$L\left((a \cup b)^{*} a b b a(a \cup b)^{*}\right)=$


## Hidden: Going the Other Way

```
L={w\in{a,b}*: |w| is even}
    (a\cupb)(a\cupb))*
    (aa\cupab \cup ba \cupbb)*
    L}={w\in{0,1\mp@subsup{}}{}{*}:w\mathrm{ is a binary representation of a
        multiple of 4}
        0\cup1(0\cup1)*00
    L ={w\in{a, b}*:w contains an odd number of a's}
        b* (ab*ab*)* a b*
    b* a b* (ab*ab*)*
```



## More Regular Expression Examples

$L\left(\left(a a^{*}\right) \cup \varepsilon\right)=$
$L\left((a \cup \varepsilon)^{*}\right)=$
$L=\left\{w \in\{a, b\}^{*}\right.$ : there is no more than one b in $\left.w\right\}$
$L=\left\{w \in\{a, b\}^{*}\right.$ : no two consecutive letters in $w$ are the same\}

## The Details Matter

$L_{1}=\left\{w \in\{a, b\}^{*}\right.$ : every $a$ is immediately followed $\left.a \mathrm{~b}\right\}$
5 A regular expression for $L_{1}$ :
A FSM for $L_{1}$ :
$L_{2}=\left\{w \in\{a, b\}^{*}\right.$ : every a has a matching b somewhere $\}$
A regular expression for $L_{2}$ :
A FSM for $L_{2}$ :

## Kleene's Theorem

Finite state machines and regular expressions define the same class of languages.

To prove this, we must show:
Theorem: Any language that can be defined by a regular expression can be accepted by some FSM and so is regular.

Theorem: Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a regular expression.

## For Every Regular Expression There is a Corresponding FSM

We'll show this by construction. An FSM for:
$\varnothing$ :


A single element of $\Sigma$ :

$\varepsilon\left(\varnothing^{\star}\right):$


## Concatenation

If $\alpha$ is the regular expression $\beta \gamma$ and if both $L(\beta)$ and $L(\gamma)$ are regular:


## An Example

$(b \cup a b)^{*}$

An FSM for b
An FSM for a
An FSM for b


An FSM for ab:



