Exam 1: Session 12 (Dec 16)

Resources allowed:

- one double-sided 8.5×11 sheet of paper.
- No books or electronic devices, especially devices with headphones/earbuds.
- Textbook coverage:
- Chapters 1-4
- Sections 5.1-5.7
- Appendices A and C
- Covers HW 1-4 also

Recap: Nondeterministic and Deterministic FSMs

Clearly: \{Languages accepted by some DFSM\}
\subseteq
\{Languages accepted by some NDFSM\}
More interestingly:

Theorem:

For each NDFSM, there is an equivalent DFSM.
"equivalent" means "accepts the same language"

Recap: NDFSM \rightarrow DFSM Construction

Theorem: For each NDFSM, there is an equivalent DFSM.
Proof: By construction:
Given a NDFSM $M=(K, \Sigma, \Delta, s, A)$, we construct $\quad M=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A\right)$, where

$$
\begin{aligned}
& K^{\prime}=\mathscr{P}(K)\left(\text { a.k.a. } 2^{K}\right) \\
& s^{\prime}=e p s(s) \\
& A^{\prime}=\{Q \subseteq K: Q \cap A \neq \varnothing\} \\
& \delta^{\prime}(Q, a)=\bigcup\{e p s(p): p \in K \text { and } \\
& \quad(q, a, p) \in \Delta \text { for some } q \in Q\}
\end{aligned}
$$

Recap:The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =

1. For each state q in K_{M} do:
1.1 Compute eps(q).
2. $s^{\prime}=e p s(s)$
3. Compute δ^{\prime} :
3.1 active-states $=\{s\}$.
$3.2 \delta^{\prime}=\varnothing$.
3.3 While there exists some element Q of active-states for which δ ' has not yet been computed do:

For each character c in Σ_{M} do:
new-state $=\varnothing$.
For each state q in Q do:
For each state p such that $(q, c, p) \in \Delta$ do: new-state $=$ new-state \cup eps (p).
Add the transition (q, c, new-state) to δ^{\prime}. If new-state \notin active-states then insert it.
4. $K^{\prime}=$ active-states.
5. $A^{\prime}=\{Q \in K: Q \cap A \neq \varnothing\}$.

Correctness Proof of ndfsmtodfsm

To prove:
From any NDFSM $M=(K, \Sigma, \Delta, s, A)$, ndfsmtodfsm constructs a DFSM $M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$, which is equivalent to M .

Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM M^{\prime}, which is:
(1) Deterministic: By the definition in step 3 of δ ', we are guaranteed that δ ' is defined for all reachable elements of K^{\prime} and all possible input characters. Further, step 3 inserts a single value into δ ' for each state-input pair, so M^{\prime} is deterministic.
(2) Equivalent to M : We constructed δ^{\prime} so that M^{\prime} mimics an "all paths" simulation of M. We must now prove that that simulation returns the same result that M would.

A Useful Lemma

M is the NDFSM, M ' is the constructed DFSM

Lemma: Let w be any string in Σ^{*}, let p and q be any states in K, and let P be any state in K^{\prime}. Then:
$\left.(q, w)\right|^{-}{ }^{*}(p, \varepsilon)$ iff $\left((e p s(q), w) \mid-\mu^{\prime *}(P, \varepsilon)\right.$ and $\left.p \in P\right)$.
INFORMAL RESTATEMENT OF LEMMA: In other words, if the original NDFSM M starts in state q and, after reading the string w, can land in state p (along at least one of its paths), then the new DFSM M' must behave as follows:

M',

- when started in the state q^{\prime} that corresponds to the set of states that the original machine M could get to from q without consuming any input,
- reads the string w and ands in a state P (which is some set of M's states) that contains p .

Furthermore, because of the only-if part of the lemma, M' (starting from q and reading w) must end up in a "state-set" that contains only states that NDFSM M could get to from q after reading w and then following any available epsilon-transitions.

A Useful Lemma

Lemma: Let w be any string in Σ^{*}, let p and q be any states in K, and let P be any state in K^{\prime}. Then:
$(q, w) \mid-{ }_{m}{ }^{*}(p, \varepsilon)$ iff $\left((e p s(q), w) \mid{ }_{-}{ }^{\prime *}(P, \varepsilon)\right.$ and $\left.p \in P\right)$
Recall: NDFSM $M=(K, \Sigma, \Delta, s, A), \quad$ DFSM $M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A\right)$,
It turns out that we will only need this lemma for the case where $\mathrm{q}=\mathrm{s}$, but the more general form is easier to prove by induction. This is common in induction proofs.

Proof: We must show that δ^{\prime} has been defined so that the individual steps of M^{\prime}, when taken together, do the right thing for an input string w of any length. Since we know what happens one step at a time, we will prove the lemma by induction on $|w|$.

Base Case

- if part: Prove:
$\left.(q, w)\right|^{-}{ }^{*}(p, \varepsilon)$ if $\left.(e p s(q), w)\right|^{-}{ }^{*}{ }^{*}(P, \varepsilon)$ and $p \in P$ which is the same as:

$$
\left[(e p s(q), w) \mid-{ }_{M}^{*}(P, \varepsilon) \text { and } p \in P\right] \rightarrow\left[(q, w) \mid-M^{*}(p, \varepsilon)\right]
$$

- only if part: Prove

$$
\left[(q, w) \mid-{ }_{M}^{*}(p, \varepsilon)\right] \rightarrow\left[(e p s(q), w) \mid-{ }_{M}^{* *}(P, \varepsilon) \text { and } p \in P\right]
$$

ara
 The Number of States May Grow Exponentially

$|\Sigma|=n$

No. of states after 0 chars
$=1$
No. of new states after 1 char:

$\binom{n}{n-1}$	$=1$
$\binom{n}{n-2}$	$=n$
$\binom{n}{n-3}$	$=n(n-1) / 2$
	$=n-1)(n-2) / 6$

Total number of states after n chars: 2^{n}

If the Original FSM is Deterministic

1. Compute the eps $(q) \mathrm{s}$:
2. $s^{\prime}=e p s(q 0)=$
3. Compute δ^{\prime}
(\{q0\}, odd, $\{q 1\}) \quad(\{q 0\}$, even, $\{q 0\})$
(\{q1\}, odd, $\{q 1\}$)
(\{q1\}, even, $\{q 0\}$)
4. $K^{\prime}=\{\{q 0\},\{q 1\}\}$
5. $A^{\prime}=\{\{q 1\}\}$

The Real Meaning of "Determinism"

Is M deterministic?
An FSM is deterministic, in the most general definition of determinism, if, for each input and state, there is at most one possible transition.
-DFSMs are always deterministic. Why?

- NDFSMs can be deterministic (even with ε-transitions and implicit dead states), but the formalism allows nondeterminism, in general.
- Determinism implies uniquely defined machine behavior.

Deterministic FSMs as Algorithms

until accept or reject do:
$S: \quad s=$ get-next-symbol
if $s=$ end-of-input then accept
else if $s=$ a then go to S
else if $s=\mathrm{b}$ then go to T
T : $\quad s=$ get-next-symbol
if $s=$ end-of-file then accept
else if $s=$ a then go to T
else if $s=b$ then reject
end

Deterministic FSMs as Algorithms

until accept or reject do:
S: $s=$ get-next-symbol
if $s=$ end-of-file then accept
else if $s=$ a then go to S else if $s=\mathrm{b}$ then go to T
T : $\quad s=$ get-next-symbol
if $s=$ end-of-file then accept
else if $s=$ a then go to T
else if $s=b$ then reject
end
Length of Program: $|K| \times(|\Sigma|+2)$
Time required to analyze string w: $\mathcal{O}(|w| \times|\Sigma|)$
We have to write new code for every new FSM.

A Deterministic FSM Interpreter

dfsmsimulate(M : DFSM, w: string) $=$

1. $s t=s$.
2. Repeat
$2.1 c=$ get-next-symbol (w).
2.2 If $c \neq$ end-of-file then
2.2.1 st = $\delta(s t, c)$.
until $c=$ end-of-file.
3. If $s t \in A$ then accept else reject.

Input: aabaa

Nondeterministic FSMs as Algorithms

Real computers are deterministic, so we have some choices in how to to execute a NDFSM:

1. Convert the NDFSM to a deterministic one:

- Conversion can take time and space $2^{|k|}$.
- Time to analyze string w: $\mathcal{O}(|w|)$

2. Simulate the behavior of the nondeterministic one by constructing sets of states "on the fly" during execution

- No conversion cost
- Time to analyze string w: $\mathcal{O}\left(|w| \times|K|^{2}\right)$

3. Do a depth-first search of all paths through the nondeterministic machine.

A NDFSM Interpreter

ndfsmsimulate $(M=(K, \Sigma, \Delta, s, A)$: NDFSM, w : string $)=$

1. Declare the set $s t$.
2. Declare the set $s t 1$.
3. $s t=e p s(s)$.
4. Repeat
4.1 $c=$ get-next-symbol (w).
4.2 If $c \neq$ end-of-file then do
4.2.1 st1 = \varnothing.
4.2.2 For all $q \in s t$ do
4.2.2.1 For all $r \in \Delta(q, c)$ do
4.2.2.1.1 st1 = st1 $\cup e p s(r)$.
4.2.3 st = st1.
4.2.4 If $s t=\varnothing$ then exit.
until $c=$ end-of-file.
5. If $s t \cap A \neq \varnothing$ then accept else reject.

State Minimization

Among all DSFMs that are equivalent to a given DFSM, find one whose number of states is minimal

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence classes of \approx_{L} is finite.

Proof: Show the two directions of the implication:
L regular \rightarrow the number of equivalence classes of \approx_{L} is finite: If L is regular, then there exists some FSM M that accepts L. M has some finite number of states m. The cardinality of $\approx_{L} \leq m$. So the cardinality of \approx_{L} is finite.

The number of equivalence classes of \approx_{L} is finite $\rightarrow L$ regular: If the cardinality of \approx_{L} is finite, then the construction that was described in the proof of the previous theorem will build an FSM that accepts L. So L must be regular.

Minimizing an Existing DFSM (Without Knowing $\approx L$)

Two approaches:

- Begin with M and collapse redundant states, getting rid of one at a time until the resulting machine is minimal.
- Begin by overclustering the states of L into just two groups, accepting and nonaccepting. Then iteratively split those groups apart until all the distinctions that L requires have been made.

```
The Overclustering Approach
We need a definition for "equivalent", i.e., mergeable states.
Define \(q \equiv p\) iff for all strings \(w \in \Sigma^{*}\), either \(w\) drives \(M\) to an accepting state from both \(q\) and \(p\) or it drives \(M\) to a rejecting state from both \(q\) and \(p\).
```


An Example

$$
\Sigma=\{a, b\} \quad L=\left\{w \in \Sigma^{*}:|w| \text { is even }\right\}
$$

$$
q_{2} \equiv q_{3}
$$

Constructing \equiv as the Limit of a Sequence of Approximating Equivalence Relations \equiv^{n}

(Where n is the length of the input strings that have been considered so far)

Consider input strings, starting with ε, and increasing in length by 1 at each iteration. Start by way overgrouping states. Then split them apart as it becomes apparent (with longer and longer strings) that their behavior is not identical.

Constructing \equiv_{n}

- $p \equiv^{0} q$ iff they behave equivalently when they read ε. In other words, if they are both accepting or both rejecting states.
- $p \equiv^{1} q$ iff they behave equivalently when they read any string of length 1, i.e., if any single character sends both of them to an accepting state or both of them to a rejecting state. Note that this is equivalent to saying that any single character sends them to states that are \equiv^{0} to each other.
- $p \equiv^{2} q$ iff they behave equivalently when they read any string of length 2, which they will do if, when they read the first character they land in states that are \equiv^{1} to each other. By the definition of \equiv^{1}, they will then yield the same outcome when they read the single remaining character.
- And so forth.

Constructing \equiv, Continued

More precisely, $\forall p, q \in K$ and any $n \geq 1, q \equiv^{n} p$ iff:

1. $q \equiv^{n-1} p$, and
2. $\forall a \in \Sigma\left(\delta(p, a) \equiv^{n-1} \delta(q, a)\right)$

Summary

- Given any regular language L, there exists a minimal DFSM M that accepts L.
- M is unique up to the naming of its states.
- Given any DFSM M, there exists an algorithm $\operatorname{minDFSM}$ that constructs a minimal DFSM that also accepts $L(M)$.

Canonical Forms

A canonical form for some set of objects C assigns exactly one representation to each class of "equivalent" objects in C.

Further, each such representation is distinct, so two objects in C share the same representation iff they are "equivalent" in the sense for which we define the form.

A Canonical Form for FSMs

buildFSMcanonicalform(M: FSM) =

1. $M^{\prime}=n d f s m t o d f s m(M)$.
2. $M^{*}=\min D F S M\left(M^{*}\right)$.
3. Create a unique assignment of names to the states of M^{*}.
4. Return M^{*}.

Given two FSMs M_{1} and M_{2} :
buildFSMcanonicalform $\left(M_{1}\right)$
=
buildFSMcanonicalform $\left(M_{2}\right)$
iff $L\left(M_{1}\right)=L\left(M_{2}\right)$.

