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MA/CSSE 474
Theory of Computation

NDFSM�DFSM Proof 

Minimize DFSM States

Exam 1: Session 12 (Dec 16)

• Resources allowed: 

– one double-sided 8.5 x 11 sheet of paper.  

– No books or electronic devices, especially 

devices with headphones/earbuds.

• Textbook coverage:

– Chapters 1-4

– Sections 5.1-5.7

– Appendices A and C

• Covers HW 1-4 also
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Recap: Nondeterministic and 
Deterministic FSMs

Clearly:    {Languages accepted by some DFSM}

⊆

{Languages accepted by some NDFSM}

More interestingly:

Theorem:

For each NDFSM, there is an equivalent DFSM.

"equivalent" means "accepts the same language"

Recap: NDFSM ���� DFSM 
Construction

Theorem: For each NDFSM, there is an 

equivalent DFSM.

Proof: By construction:

Given a NDFSM   M = (K,  Σ, ∆,  s, A), 

we construct     M' = (K', Σ, δ', s', A'), where

K' = P(K)  (a.k.a. 2K)

s' = eps(s)

A' = {Q ⊆ K : Q ∩ A ≠ ∅}

δ'(Q, a) = ∪{eps(p): p ∈ K and 

(q, a, p) ∈ ∆ for some q ∈ Q}
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Recap:The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =   
1. For each state q in KM do:

1.1 Compute eps(q).
2. s' = eps(s) 
3. Compute δ': 

3.1 active-states = {s'}.
3.2 δ' = ∅.
3.3 While there exists some element Q of active-states for 

which δ' has not yet been computed do:
For each character c in ΣM do:

new-state = ∅.
For each state q in Q do:

For each state p such that (q, c, p) ∈ ∆ do:
new-state = new-state ∪ eps(p).

Add the transition (q, c, new-state) to δ'.
If new-state ∉ active-states then insert it.

4. K' = active-states.
5. A' = {Q ∈ K' : Q ∩ A ≠ ∅ }.

Draw part of the transition 

diagram for the DFSM 

constructed from the 

NDFSM that appeared a 

few slides earlier.

ε

Correctness Proof of ndfsmtodfsm

To prove:

From any NDFSM M = (K, Σ, ∆, s, A), ndfsmtodfsm

constructs a DFSM M'= (K', Σ, δ', s', A'), which is 

equivalent to M.

Q2
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Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM 

M', which is:

(1) Deterministic: By the definition in step 3 of δ', we are 

guaranteed that δ' is defined for all reachable 

elements of K' and all possible input characters.  

Further, step 3 inserts a single value into δ' for each 

state-input pair, so M' is deterministic.

(2) Equivalent to M:  We constructed δ' so that M'

mimics an “all paths” simulation of M.  We must now 

prove that that simulation returns the same result that 

M would.  

A Useful Lemma

Lemma:  Let w be any string in Σ*, let p and q be any states in K, and 
let P be any state in K'.  Then:

(q, w) |-M* (p, ε) iff ((eps(q), w) |-M' * (P, ε) and p ∈ P)  .  

INFORMAL RESTATEMENT OF LEMMA:  In other words, if the 
original NDFSM M starts in state q and, after reading the string w, can 
land in state p (along at least one of its paths), then the new DFSM M' 
must behave as follows: 

M', 
• when started in the state q' that corresponds to the set of states that 

the original machine M could get to from q without consuming any 
input, 

• reads the string w and ands in a state P (which is some set of M's 
states) that contains p. 

Furthermore, because of the only-if part of the lemma, M' (starting from 
q and reading w) must end up in a "state-set" that contains only states 
that NDFSM M could get to from q after reading w and then following 
any available epsilon-transitions.

M is the NDFSM, M' is the constructed DFSM
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A Useful Lemma
Lemma:  Let w be any string in Σ*, let p and q be any 

states in K, and let P be any state in K'.  Then:

(q, w) |-M* (p, ε) iff ((eps(q), w) |-M' * (P, ε) and p ∈ P)  

.  

It turns out that we will only need this lemma for the case 

where q = s, but the more general form is easier to prove 

by induction.  This is common in induction proofs.

Proof: We must show that δ' has been defined so that the 

individual steps of M', when taken together, do the right 

thing for an input string w of any length.  Since we know 

what happens one step at a time, we will prove the lemma 

by induction on |w|.

Recall: NDFSM M = (K, Σ, ∆, s, A),   DFSM M'= (K', Σ, δ', s', A'), 

Base Case

• if part: Prove:

(q, w) |-M* (p, ε) if (eps(q), w) |-M'* (P, ε) and p ∈ P

which is the same as: 

[ (eps(q), w) |-M'* (P, ε) and p ∈ P ] → [ (q, w) |-M*(p, ε) ]

• only if part:  Prove

[ (q, w) |-M* (p, ε) ] → [ (eps(q), w) |-M'* (P, ε) and p ∈ P ]
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The Number of States May Grow 
Exponentially

No. of states after 0 chars: = 1
No. of new states after 1 char:        = n

No. of new states after 2 chars:        = n(n-1)/2

No. of new states after 3 chars:        = n(n-1)(n-2)/6

Total number of states after n chars: 2n
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|Σ| = n

Another Example

L = {w ∈ {a, b}* : 

the fourth to the last character is a}
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If the Original FSM is Deterministic

1. Compute the eps(q)s:
2. s' = eps(q0) = 
3. Compute δ'

({q0}, odd, {q1}) ({q0}, even, {q0})
({q1}, odd, {q1}) ({q1}, even, {q0})

4. K' = {{q0}, {q1}}
5. A' = { {q1} }

M' = M

M

The Real Meaning of “Determinism”

Is M deterministic?

An FSM is deterministic, in the most general definition of 
determinism, if, for each input and state, there is at most one 
possible transition.

• DFSMs are always deterministic.  Why?
• NDFSMs can be deterministic (even with ε-transitions and implicit    

dead states), but the formalism allows nondeterminism, in general.
• Determinism implies uniquely defined machine behavior.

Let M =
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Deterministic FSMs as Algorithms

until accept or reject do:

S: s = get-next-symbol

if s = end-of-input then accept

else if s = a then go to S

else if s = b then go to T

T: s = get-next-symbol

if s = end-of-file then accept

else if s = a then go to T

else if s = b then reject

end

Deterministic FSMs as Algorithms

until accept or reject do:

S: s = get-next-symbol

if s = end-of-file then accept

else if s = a then go to S

else if s = b then go to T

T: s = get-next-symbol

if s = end-of-file then accept

else if s = a then go to T

else if s = b then reject

end

Length of Program:  |K| × (|Σ| + 2)
Time required to analyze string w:  O(|w| × |Σ|)

We have to write new code for every new FSM. 
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A Deterministic FSM Interpreter
dfsmsimulate(M: DFSM, w: string) =

1. st = s.

2. Repeat

2.1 c = get-next-symbol(w).

2.2 If c ≠ end-of-file then

2.2.1 st = δ(st, c).

until c = end-of-file.

3. If st ∈ A then accept else reject.

Input: aabaa

Nondeterministic FSMs as 
Algorithms

Real computers are deterministic, so we have some choices 

in how to to execute a NDFSM:

1. Convert the NDFSM to a deterministic one:
• Conversion can take time and space 2|K|.
• Time to analyze string w:  O(|w|)

2. Simulate the behavior of the nondeterministic one by    

constructing sets of states "on the fly" during execution
• No conversion cost
• Time to analyze string w: O(|w| × |K|2)

3. Do a depth-first search of all paths through the 

nondeterministic machine.
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A NDFSM Interpreter

ndfsmsimulate(M = (K, Σ, ∆, s, A): NDFSM, w: string) =

1. Declare the set st.

2. Declare the set st1.

3. st = eps(s).

4. Repeat

4.1 c = get-next-symbol(w).

4.2 If c ≠ end-of-file then do

4.2.1 st1 = ∅.

4.2.2 For all q ∈ st do

4.2.2.1 For all r ∈ ∆(q, c) do 

4.2.2.1.1 st1 = st1 ∪ eps(r).

4.2.3 st = st1.

4.2.4 If st = ∅ then exit.

until c = end-of-file.

6. If st ∩ A ≠ ∅ then accept else reject.

Continue from Day 9

Finite State Machines

State Minimization

Among all DSFMs that are equivalent to a 

given DFSM, find one whose number of 

states is minimal
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The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence 
classes of ≈L is finite.  

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is 

finite: If L is regular, then there exists some FSM M that 
accepts L.  M has some finite number of states m.  The 
cardinality of ≈L ≤ m.  So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L 

regular: If the cardinality of ≈L is finite, then the construction 
that was described in the proof of the previous theorem will 
build an FSM that accepts L.  So L must be regular.  

So Where Do We Stand?

1. We know that for any regular language L there exists a minimal 
accepting machine ML.

2. We know that |K| of ML equals the number of equivalence 
classes of ≈L.

3. We know how to construct ML from ≈L.

4. We know that ML is unique up to the naming of its states.

But is this good enough?

Consider:
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• Begin with M and collapse redundant states, getting rid 
of one at a time until the resulting machine is minimal.

• Begin by overclustering the states of L into just two 
groups, accepting and nonaccepting.  Then iteratively 
split those groups apart until all the distinctions that L
requires have been made.

Minimizing an Existing DFSM 
(Without Knowing ≈≈≈≈L)

Two approaches:

The Overclustering Approach

We need a definition for “equivalent”, i.e., mergeable 

states.

Define q ≡ p iff for all strings w ∈ Σ*, either w drives M to 

an accepting state from both q and p or it drives M to 

a rejecting state from both q and p.
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An Example

Σ = {a, b}   L = {w ∈ Σ* : |w| is even}

q2 ≡ q3

Constructing ≡≡≡≡ as the Limit of a Sequence of 
Approximating Equivalence Relations ≡≡≡≡n

(Where n is the length of the input strings that have 

been considered so far)

Consider input strings, starting with ε, and increasing in 

length by 1 at each iteration.  Start by way 

overgrouping states.  Then split them apart as it 

becomes apparent (with longer and longer strings) 

that their behavior is not identical.
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Constructing  ≡≡≡≡n

• p ≡0 q iff they behave equivalently when they read ε.  In 
other words, if they are both accepting or both rejecting 
states.

• p ≡1 q iff they behave equivalently when they read any 
string of length 1, i.e., if any single character sends both 
of them to an accepting state or both of them to a 
rejecting state.  Note that this is equivalent to saying that 
any single character sends them to states that are ≡0 to 
each other. 

• p ≡2 q iff they behave equivalently when they read any 
string of length 2, which they will do if, when they read 
the first character they land in states that are ≡1 to each 
other.  By the definition of ≡1, they will then yield the 
same outcome when they read the single remaining 
character.

• And so forth.

Constructing ≡≡≡≡, Continued

More precisely, ∀p,q ∈ K and any n ≥ 1, q ≡n p

iff:

1. q ≡n-1 p, and

2. ∀a ∈ Σ (δ(p, a) ≡n-1 δ(q, a))
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MinDFSM
MinDFSM(M: DFSM) =

1.  classes := {A, K-A};
2.  Repeat until no changes are made

2.1.  newclasses := ∅;
2.2.  For each equivalence class e in classes, if e contains 

more than one state do
For each state q in e do

For each character c in Σ do
Determine which element of classes q

goes to if c is read
If there are any two states p and q that need to be 

split, split them.  Create as many new 
equivalence classes as are necessary.  Insert 

those classes into newclasses.
If there are no states whose behavior differs, no 

splitting is necessary.  Insert e into 
newclasses.

2.3.  classes := newclasses;

3.  Return M* = (classes, Σ, δ, [sM], {[q: the elements of q are in AM]}), 
where δM* is constructed as follows:

if δM(q, c) = p, then δM*([q], c) = [p]

Summary

● Given any regular language L, there exists a 

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm    

minDFSM that constructs a minimal DFSM 

that also accepts L(M).
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Canonical Forms

A canonical form for some set of objects C assigns 

exactly one representation to each class of “equivalent” 

objects in C.  

Further, each such representation is distinct, so two 

objects in C share the same representation iff they are 

“equivalent” in the sense for which we define the form.  

A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) = 

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).

3.  Create a unique assignment of names to the 

states of M*.

4.  Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1) 

= 

buildFSMcanonicalform(M2)

iff L(M1) = L(M2). 


