
6/16/2012

1

MA/CSSE 474
Theory of Computation

DFSM Minimization

Finite State Machines

State Minimization

Among all DSFMs that are equivalent

to a given DFSM, find one whose

number of states is minimal

6/16/2012

2

Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent or
indistinguishable with respect to a language L if, no matter what
string w tacked on to them on the right, either both concatenated
strings will be in L or neither will. Why is this the right notion?
Because it corresponds naturally to what the states of a
recognizing FSM have to remember.

Example:

(1) a b a b a b

(2) b a a b a b

Suppose L = {w ∈ {a, b}* : |w| is even}. Are (1) and (2) equivalent?

Suppose L = {w ∈ {a, b}* : every a is immediately followed by b}.

Are (1) and (2) equivalent?

Q1a

Defining Equivalence for Strings

If two strings are indistinguishable with respect to L, we

write:

x ≈L y

Formally, x ≈L y iff ∀z ∈ Σ* (xz ∈ L iff yz ∈ L).

Q1b,2

Show that ≈L is an equivalence relation

6/16/2012

3

≈≈≈≈L is an Equivalence Relation

• No equivalence class of ≈L is empty.

• Each string in Σ* is in exactly one equivalence class of ≈L.

• Notation: For any x in Σ*, [x] means the equivalence

class of ≈L that contains x.

An equivalence relation on a set partitions the set.

Thus:

An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L: Try:

ε aa bbb

a bb baa

b aba

aab

6/16/2012

4

An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L:

[1] [ε, b, abb, …] [all strings in L].

[2] [a, abbba, …] [all strings that end in a and

have no prior a that is not
followed by a b].

[3] [aa, abaa, …] [all strings that contain at least

one instance of aa].

Another Example of ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : |w| is even}

ε bb aabb

a aba bbaa

b aab aabaa

aa bbb

baa

The equivalence classes of ≈L:

6/16/2012

5

Yet Another Example of ≈≈≈≈L

Σ = {a, b}

L = aab*a

ε bb aabaa

a aba aabbba

b aab aabbaa

aa baa

aabb

The equivalence classes of ≈L:
A good

example for
practice later

When More Than One Class Contains

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

ε aa aabb

a bb aabaa

b aba aabbba

aab aabbaa

baa

The equivalence classes of ≈L:

6/16/2012

6

When More Than One Class Contains

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

[1] [ε]

[2] [a, aba, ababa, …]

[3] [b, ab, bab, abab, …]

[4] [aa, abaa, ababb…]

Does ≈≈≈≈L Always Have a Finite
Number of Equivalence Classes?

Σ = {a, b}

L = {anbn, n ≥ 0}

ε aa aaaa

a aba aaaaa

b aaa

The equivalence classes of ≈L:

6/16/2012

7

The Best We Can Do

Theorem: Let L be a regular language and let M be a

DFSM that accepts L. The number of states in M is

greater than or equal to the number of equivalence

classes of ≈L.

Proof: Suppose that the number of states in M were

less than the number of equivalence classes of ≈L.

Then, by the pigeonhole principle, there must be at

least one state q that contains strings from at least two

equivalence classes of ≈L. But then M’s future behavior

on those strings will be identical, which is not consistent

with the fact that they are in different equivalence

classes of ≈L.

The Best Is Unique

Theorem: Let L be a regular language over some alphabet Σ.
Then there is a DFSM M that accepts L and that has precisely
n states where n is the number of equivalence classes of ≈L.
Any other FSM that accepts L must either have more states
than M or it must be equivalent to M except for state names.

Proof: (by construction)
M = (K, Σ, δ, s, A), where:
● K contains n states, one for each equivalence class of ≈L.
● s = [ε], the equivalence class of ε under ≈L.
● A = {[x] : x ∈ L}.
● δ([x], a) = [xa]. In other words, if M is in the state that

contains some string x, then, after reading the next
symbol, a, it will be in the state that contains xa.

Q3

6/16/2012

8

Proof, Continued

• K is finite. Since L is regular, it is accepted by some
DFSM M′. M′ has some finite number of states m. By
Theorem 5.4, n ≤ m. So K is finite.

• δ is a function. In other words, it is defined for all (state,
input) pairs and it produces, for each of them, a unique
value. The construction defines a value of δ for all
(state, input) pairs. The fact that the construction
guarantees a unique such value follows from the
definition of ≈L.

We must show that:

Proof, Continued

• L = L(M). To prove this, we must first show
that ∀s, t (([ε], st) |-M* ([s], t)). We do this by induction
on |s|.

If |s| = 0 then we have ([ε], t) |-M* ([ε], t), which is true
since M simply makes zero moves.

On to the induction step:

Q4, 5, 6

6/16/2012

9

Proof, Continued

• There exists no smaller machine M# that also accepts L.
This follows directly from Theorem 5.4, which says that
the number of equivalence classes of ≈L imposes a
lower bound on the number of states in any DFSM that
accepts L.

• There is no different machine M# that also has n states
and that accepts L.

Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

1: [ε] ε

2: [a, ba, aba, baba, ababa, ...] (b∪ε)(ab)*a

3: [b, ab, bab, abab, ...] (a∪ε)(ba)*b

4: [bb, aa, bba, bbb, ...] the rest

● Equivalence classes become states

● Start state is [ε]

● Accepting states are all equivalence classes in L

● δ([x], a) = [xa]

6/16/2012

10

Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence
classes of ≈L is finite.

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is

finite: If L is regular, then there exists some FSM M that
accepts L. M has some finite number of states m. The
cardinality of ≈L ≤ m. So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L

regular: If the cardinality of ≈L is finite, then the construction
that was described in the proof of the previous theorem will
build an FSM that accepts L. So L must be regular.

6/16/2012

11

So Where Do We Stand?

1. We know that for any regular language L there exists a minimal
accepting machine ML.

2. We know that |K| of ML equals the number of equivalence
classes of ≈L.

3. We know how to construct ML from ≈L.

4. We know that ML is unique up to the naming of its states.

But is this good enough?

Consider:

• Begin with M and collapse redundant states, getting rid
of one at a time until the resulting machine is minimal.

• Begin by overclustering the states of L into just two
groups, accepting and nonaccepting. Then iteratively
split those groups apart until all the distinctions that L
requires have been made.

Minimizing an Existing DFSM
(Without Knowing ≈≈≈≈L)

Two approaches:

6/16/2012

12

The Overclustering Approach

We need a definition for “equivalent”, i.e., mergeable

states.

Define q ≡ p iff for all strings w ∈ Σ*, either w drives M to

an accepting state from both q and p or it drives M to

a rejecting state from both q and p.

An Example

Σ = {a, b} L = {w ∈ Σ* : |w| is even}

q2 ≡ q3

6/16/2012

13

Constructing ≡≡≡≡ as the Limit of a Sequence of
Approximating Equivalence Relations ≡≡≡≡n

(Where n is the length of the input strings that have

been considered so far)

Consider input strings, starting with ε, and increasing in

length by 1 at each iteration. Start by way

overgrouping states. Then split them apart as it

becomes apparent (with longer and longer strings)

that their behavior is not identical.

Constructing ≡≡≡≡n

• p ≡0 q iff they behave equivalently when they read ε. In
other words, if they are both accepting or both rejecting
states.

• p ≡1 q iff they behave equivalently when they read any
string of length 1, i.e., if any single character sends both
of them to an accepting state or both of them to a
rejecting state. Note that this is equivalent to saying that
any single character sends them to states that are ≡0 to
each other.

• p ≡2 q iff they behave equivalently when they read any
string of length 2, which they will do if, when they read
the first character they land in states that are ≡1 to each
other. By the definition of ≡1, they will then yield the
same outcome when they read the single remaining
character.

• And so forth.

6/16/2012

14

Constructing ≡≡≡≡, Continued

More precisely, ∀p,q ∈ K and any n ≥ 1, q ≡n p

iff:

1. q ≡n-1 p, and

2. ∀a ∈ Σ (δ(p, a) ≡n-1 δ(q, a))

MinDFSM
MinDFSM(M: DFSM) =

1. classes := {A, K-A};
2. Repeat until no changes are made

2.1. newclasses := ∅;
2.2. For each equivalence class e in classes, if e contains

more than one state do
For each state q in e do

For each character c in Σ do
Determine which element of classes q

goes to if c is read
If there are any two states p and q that need to be

split, split them. Create as many new
equivalence classes as are necessary. Insert

those classes into newclasses.
If there are no states whose behavior differs, no

splitting is necessary. Insert e into
newclasses.

2.3. classes := newclasses;

3. Return M* = (classes, Σ, δ, [sM], {[q: the elements of q are in AM]}),
where δM* is constructed as follows:

if δM(q, c) = p, then δM*([q], c) = [p]

6/16/2012

15

An Example

Σ = {a, b}

≡0 =

≡1 =

≡2 =

The Result

Q7

6/16/2012

16

Summary

● Given any regular language L, there exists a

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm

minDFSM that constructs a minimal DFSM

that also accepts L(M).

Canonical Forms

A canonical form for some set of objects C assigns

exactly one representation to each class of “equivalent”

objects in C.

Further, each such representation is distinct, so two

objects in C share the same representation iff they are

“equivalent” in the sense for which we define the form.

6/16/2012

17

A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) =

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).

3. Create a unique assignment of names to the

states of M*.

4. Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1)

=

buildFSMcanonicalform(M2)

iff L(M1) = L(M2).

