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MA/CSSE 474
Theory of Computation

DFSM Minimization

Finite State Machines

State Minimization

Among all DSFMs that are equivalent 

to a given DFSM, find one whose 

number of states is minimal
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Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent or 
indistinguishable with respect to a language L if, no matter what 
string w tacked on to them on the right, either both concatenated 
strings will be in L or neither will.  Why is this the right notion?  
Because it corresponds naturally to what the states of a 
recognizing FSM have to remember.  

Example:

(1) a b a b a b

(2) b a a b a b

Suppose L = {w ∈ {a, b}* : |w| is even}.  Are (1) and (2) equivalent?

Suppose L = {w ∈ {a, b}* : every a is immediately followed by b}.  

Are (1) and (2) equivalent?

Q1a

Defining Equivalence for Strings

If two strings are indistinguishable with respect to L, we 

write:

x ≈L y

Formally, x ≈L y      iff ∀z ∈ Σ* (xz ∈ L iff yz ∈ L).

Q1b,2

Show that ≈L  is an equivalence relation
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≈≈≈≈L is an Equivalence Relation

• No equivalence class of ≈L is empty.

• Each string in Σ* is in exactly one equivalence class of ≈L.

• Notation:  For any x in Σ*, [x] means the equivalence 

class of ≈L  that contains x.

An equivalence relation on a set partitions the set.

Thus:

An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L:  Try:

ε aa bbb

a bb baa

b aba

aab
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An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L:  

[1] [ε, b, abb, …] [all strings in L].

[2] [a, abbba, …] [all strings that end in a and

have no prior a that is not 
followed by a b].

[3] [aa, abaa, …] [all strings that contain at least 

one instance of aa].

Another Example of ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : |w| is even}

ε bb aabb

a aba bbaa

b aab aabaa

aa bbb

baa

The equivalence classes of ≈L:
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Yet Another Example of ≈≈≈≈L

Σ = {a, b}

L = aab*a

ε bb aabaa

a aba aabbba

b aab aabbaa

aa baa

aabb

The equivalence classes of ≈L:
A good 

example for 
practice later

When More Than One Class Contains 

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

ε aa aabb

a bb aabaa

b aba aabbba

aab aabbaa

baa

The equivalence classes of ≈L:
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When More Than One Class Contains 

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

[1] [ε]

[2] [a, aba, ababa, …]

[3] [b, ab, bab, abab, …]

[4] [aa, abaa, ababb…]

Does ≈≈≈≈L Always Have a Finite 
Number of Equivalence Classes?

Σ = {a, b}

L = {anbn, n ≥ 0}

ε aa aaaa

a aba aaaaa

b aaa

The equivalence classes of ≈L:
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The Best We Can Do

Theorem: Let L be a regular language and let M be a 

DFSM that accepts L. The number of states in M is 

greater than or equal to the number of equivalence 

classes of ≈L.

Proof: Suppose that the number of states in M were 

less than the number of equivalence classes of ≈L.  

Then, by the pigeonhole principle, there must be at 

least one state q that contains strings from at least two 

equivalence classes of ≈L. But then M’s future behavior 

on those strings will be identical, which is not consistent 

with the fact that they are in different equivalence 

classes of ≈L.  

The Best Is Unique

Theorem: Let L be a regular language over some alphabet Σ.  
Then there is a DFSM M that accepts L and that has precisely 
n states where n is the number of equivalence classes of ≈L.  
Any other FSM that accepts L must either have more states 
than M or it must be equivalent to M except for state names. 

Proof:  (by construction)
M = (K, Σ, δ, s, A), where: 
● K contains n states, one for each equivalence class of  ≈L.
● s = [ε], the equivalence class of ε under ≈L.
● A = {[x] : x ∈ L}.
● δ([x], a) = [xa].  In other words, if M is in the state that

contains some string x, then, after reading the next
symbol, a, it will be in the state that contains xa.

Q3
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Proof, Continued

• K is finite.  Since L is regular, it is accepted by some 
DFSM M′.  M′ has some finite number of states m.  By 
Theorem 5.4, n ≤ m.  So K is finite.

• δ is a function.  In other words, it is defined for all (state, 
input) pairs and it produces, for each of them, a unique 
value.  The construction defines a value of δ for all 
(state, input) pairs.  The fact that the construction 
guarantees a unique such value follows from the 
definition of ≈L.

We must show that:

Proof, Continued

• L = L(M).  To prove this, we must first show 
that ∀s, t (([ε], st) |-M* ([s], t)).  We do this by induction 
on |s|. 

If |s| = 0 then we have ([ε], t) |-M* ([ε], t), which is true 
since M simply makes zero moves. 

On to the induction step:

Q4, 5, 6
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Proof, Continued

• There exists no smaller machine M# that also accepts L.  
This follows directly from Theorem 5.4, which says that 
the number of equivalence classes of ≈L imposes a 
lower bound on the number of states in any DFSM that 
accepts L. 

• There is no different machine M# that also has n states 
and that accepts L.  

Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

1: [ε] ε

2: [a, ba, aba, baba, ababa, ...]  (b∪ε)(ab)*a

3: [b, ab, bab, abab, ...] (a∪ε)(ba)*b

4: [bb, aa, bba, bbb, ...] the rest

● Equivalence classes become states

● Start state is [ε]

● Accepting states are all equivalence classes in L

● δ([x], a) = [xa]
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Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence 
classes of ≈L is finite.  

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is 

finite: If L is regular, then there exists some FSM M that 
accepts L.  M has some finite number of states m.  The 
cardinality of ≈L ≤ m.  So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L 

regular: If the cardinality of ≈L is finite, then the construction 
that was described in the proof of the previous theorem will 
build an FSM that accepts L.  So L must be regular.  
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So Where Do We Stand?

1. We know that for any regular language L there exists a minimal 
accepting machine ML.

2. We know that |K| of ML equals the number of equivalence 
classes of ≈L.

3. We know how to construct ML from ≈L.

4. We know that ML is unique up to the naming of its states.

But is this good enough?

Consider:

• Begin with M and collapse redundant states, getting rid 
of one at a time until the resulting machine is minimal.

• Begin by overclustering the states of L into just two 
groups, accepting and nonaccepting.  Then iteratively 
split those groups apart until all the distinctions that L
requires have been made.

Minimizing an Existing DFSM 
(Without Knowing ≈≈≈≈L)

Two approaches:
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The Overclustering Approach

We need a definition for “equivalent”, i.e., mergeable 

states.

Define q ≡ p iff for all strings w ∈ Σ*, either w drives M to 

an accepting state from both q and p or it drives M to 

a rejecting state from both q and p.

An Example

Σ = {a, b}   L = {w ∈ Σ* : |w| is even}

q2 ≡ q3



6/16/2012

13

Constructing ≡≡≡≡ as the Limit of a Sequence of 
Approximating Equivalence Relations ≡≡≡≡n

(Where n is the length of the input strings that have 

been considered so far)

Consider input strings, starting with ε, and increasing in 

length by 1 at each iteration.  Start by way 

overgrouping states.  Then split them apart as it 

becomes apparent (with longer and longer strings) 

that their behavior is not identical.

Constructing  ≡≡≡≡n

• p ≡0 q iff they behave equivalently when they read ε.  In 
other words, if they are both accepting or both rejecting 
states.

• p ≡1 q iff they behave equivalently when they read any 
string of length 1, i.e., if any single character sends both 
of them to an accepting state or both of them to a 
rejecting state.  Note that this is equivalent to saying that 
any single character sends them to states that are ≡0 to 
each other. 

• p ≡2 q iff they behave equivalently when they read any 
string of length 2, which they will do if, when they read 
the first character they land in states that are ≡1 to each 
other.  By the definition of ≡1, they will then yield the 
same outcome when they read the single remaining 
character.

• And so forth.
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Constructing ≡≡≡≡, Continued

More precisely, ∀p,q ∈ K and any n ≥ 1, q ≡n p

iff:

1. q ≡n-1 p, and

2. ∀a ∈ Σ (δ(p, a) ≡n-1 δ(q, a))

MinDFSM
MinDFSM(M: DFSM) =

1.  classes := {A, K-A};
2.  Repeat until no changes are made

2.1.  newclasses := ∅;
2.2.  For each equivalence class e in classes, if e contains 

more than one state do
For each state q in e do

For each character c in Σ do
Determine which element of classes q

goes to if c is read
If there are any two states p and q that need to be 

split, split them.  Create as many new 
equivalence classes as are necessary.  Insert 

those classes into newclasses.
If there are no states whose behavior differs, no 

splitting is necessary.  Insert e into 
newclasses.

2.3.  classes := newclasses;

3.  Return M* = (classes, Σ, δ, [sM], {[q: the elements of q are in AM]}), 
where δM* is constructed as follows:

if δM(q, c) = p, then δM*([q], c) = [p]
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An Example

Σ = {a, b} 

≡0 = 

≡1 =

≡2 = 

The Result

Q7
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Summary

● Given any regular language L, there exists a 

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm    

minDFSM that constructs a minimal DFSM 

that also accepts L(M).

Canonical Forms

A canonical form for some set of objects C assigns 

exactly one representation to each class of “equivalent” 

objects in C.  

Further, each such representation is distinct, so two 

objects in C share the same representation iff they are 

“equivalent” in the sense for which we define the form.  
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A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) = 

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).

3.  Create a unique assignment of names to the 

states of M*.

4.  Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1) 

= 

buildFSMcanonicalform(M2)

iff L(M1) = L(M2). 


