

AL 4 185	An Example		
0.000 C	$\Sigma = \{a, b\}$ L = {w $\in \Sigma^*$: every a is immediately followed by b}		
	The equivalence classes of \approx_L : Try:		
	ε	aa	bbb
	a	bb	baa
	b	aba	
		aab	

The Best We Can Do

Theorem: Let *L* be a regular language and let *M* be a DFSM that accepts *L*. The number of states in *M* is greater than or equal to the number of equivalence classes of \approx_L .

Proof: Suppose that the number of states in *M* were less than the number of equivalence classes of \approx_L . Then, by the pigeonhole principle, there must be at least one state *q* that contains strings from at least two equivalence classes of \approx_L . But then *M*'s future behavior on those strings will be identical, which is not consistent with the fact that they are in different equivalence classes of \approx_L .

