
6/12/2012

1

MA/CSSE 474
Theory of Computation

NDFSM�DFSM

Pattern Matching: Multiple Keywords

L = {w ∈ {a, b}* : ∃x, y ∈ {a, b}*

((w = x abbaa y) ∨ (w = x baba y))}.

6/12/2012

2

Checking from the End

L = {w ∈ {a, b}* :

the fourth character from the end is a}

Another Pattern Matching Example

L = {w ∈ {0, 1}* : w is the binary encoding of a

positive integer that is divisible by 16 or is

odd}

Q1

6/12/2012

3

Another NDFSM

L1= {w ∈ {a, b}*: aa occurs in w}

L2= {x ∈ {a, b}*: bb occurs in x}

L3= {y ∈ L1 ∪ L2 }

M1 =

M2=

M3=

This is a good
example for
practice later

Analyzing Nondeterministic FSMs

Does this FSM accept:

baaba

Remember: we just have to find one accepting path.

6/12/2012

4

Two approaches:

• Explore a search tree:

• Follow all paths in parallel

Simulating Nondeterministic FSMs

Dealing with εεεε Transitions

The epsilon closure of a state:

eps(q) = {p ∈ K : (q, w) |-*M (p, w)}.

eps(q) is the closure of {q} under the relation

{(p, r) : there is a transition (p, ε, r) ∈ ∆}.

Algorithm for computing eps(q):
result = {q}.

While there exists some p ∈ result and

some r ∉ result and

some transition (p, ε, r) ∈ ∆ do:

Insert r into result.

Return result.

6/12/2012

5

Calculate eps(q) for each state q

Q2

result = {q}.

While there exists some p ∈ result and

some r ∉ result and

some transition (p, ε, r) ∈ ∆ do:

result = result ∪ { r }

Return result.

Simulating a NDFSM

ndfsmsimulate(M: NDFSM, w: string) =

1. current-state = eps(s).

2. While any input symbols in w remain to be read do:

1. c = get-next-symbol(w).

2. next-state = ∅.

3. For each state q in current-state do:

For each state p such that (q, c, p) ∈ ∆ do:

next-state = next-state ∪ eps(p).

4. current-state = next-state.

3. If current-state contains any states in A, accept.
Else reject.

Q3

6/12/2012

6

Nondeterministic and
Deterministic FSMs

Clearly: {Languages accepted by some DFSM} ⊆

{Languages accepted by some NDFSM}

More interesting:

Theorem:

For each NDFSM, there is an equivalent DFSM.

"equivalent" means "accepts the same language"

Nondeterministic and
Deterministic FSMs

Theorem: For each NDFSM, there is an

equivalent DFSM.

Proof: By construction:

Given a NDFSM M = (K, Σ, ∆, s, A),

we construct M' = (K', Σ, δ', s', A'), where

K' = P(K)

s' = eps(s)

A' = {Q ⊆ K : Q ∩ A ≠ ∅}

δ'(Q, a) = ∪{eps(p): p ∈ K and

(q, a, p) ∈ ∆ for some q ∈ Q}

6/12/2012

7

An Algorithm for Constructing the
Deterministic FSM

1. Compute the eps(q)’s.

2. Compute s' = eps(s).

3. Compute δ‘.

4. Compute K' = a subset of P(K).

5. Compute A' = {Q ∈ K' : Q ∩ A ≠ ∅}.

The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =
1. For each state q in KM do:

1.1 Compute eps(q).
2. s' = eps(s)
3. Compute δ':

3.1 active-states = {s'}.
3.2 δ' = ∅.
3.3 While there exists some element Q of active-states for

which δ' has not yet been computed do:
For each character c in ΣM do:

new-state = ∅.
For each state q in Q do:

For each state p such that (q, c, p) ∈ ∆ do:
new-state = new-state ∪ eps(p).

Add the transition (q, c, new-state) to δ'.
If new-state ∉ active-states then insert it.

4. K' = active-states.
5. A' = {Q ∈ K' : Q ∩ A ≠ ∅ }. Q4

Draw part of the transition

diagram for the DFSM

constructed from the

NDFSM that appeared a

few slides earlier.

Next week we will
prove that it works.

6/12/2012

8

Finite State Machines

Intro to State Minimization

Among all DSFMs that are equivalent

to a given DFSM, find one whose

number of states is minimal

State Minimization

Consider:

Is this a minimal machine?

6/12/2012

9

State Minimization
Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can’t easily find the unreachable states directly.

But we can find the reachable ones and determine the

unreachable ones from there.

An algorithm for finding the reachable states:

6/12/2012

10

Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and

thus one is redundant) if all string in Σ* have the same

fate, regardless of which of the two states the machine

is in. But how can we tell this?

The simple case:

Two states have identical sets of transitions out.

Getting Rid of Redundant States

The harder case:

The outcomes in states 2 and 3 are the same, even

though the states aren’t.

6/12/2012

11

Finding an Algorithm for Minimization

Capture the notion of equivalence classes of

strings with respect to a language.

Prove that we can always find a (unique up to

state naming) a deterministic FSM with a number

of states equal to the number of equivalence

classes of strings.

Describe an algorithm for finding that

deterministic FSM.

Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent or
indistinguishable with respect to a language L if, no matter what
string w tacked on to them on the right, either both concatenated
strings will be in L or neither will. Why is this the right notion?
Because it corresponds naturally to what the states of a
recognizing FSM have to remember.

Example:

(1) a b a b a b

(2) b a a b a b

Suppose L = {w ∈ {a, b}* : |w| is even}. Are (1) and (2) equivalent?

Suppose L = {w ∈ {a, b}* : every a is immediately followed by b}.

Are (1) and (2) equivalent?

Q5a

6/12/2012

12

Defining Equivalence for Strings

If two strings are indistinguishable with respect to L, we

write:

x ≈L y

Formally, x ≈L y iff ∀z ∈ Σ* (xz ∈ L iff yz ∈ L).

Q5a

≈≈≈≈L is an Equivalence Relation

• Reflexive: ∀x ∈ Σ* (x ≈L x), because:

∀x, z ∈ Σ* (xz ∈ L ↔ xz ∈ L).

• Symmetric: ∀x, y ∈ Σ* (x ≈L y → y ≈L x), because:

∀x, y, z ∈ Σ* ((xz ∈ L ↔ yz ∈ L) ↔

(yz ∈ L ↔ xz ∈ L)).

• Transitive: ∀x, y, z ∈ Σ* (((x ≈L y) ∧ (y ≈L w)) → (x ≈L w)),

because:

∀x, y, z ∈ Σ*

(((xz ∈ L ↔ yz ∈ L) ∧ (yz ∈ L ↔ wz ∈ L)) →

(xz ∈ L ↔ wz ∈ L)).

≈L is an equivalence relation because it is:

6/12/2012

13

≈≈≈≈L is an Equivalence Relation

• No equivalence class of ≈L is empty.

• Each string in Σ* is in exactly one equivalence class of ≈L.

An equivalence relation on a set partitions the set.

Thus:

An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L: Try:

ε aa bbb

a bb baa

b aba

aab

6/12/2012

14

An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L:

[1] [ε, b, abb, …] [all strings in L].

[2] [a, abbba, …] [all strings that end in a and

have no prior a that is not
followed by a b].

[3] [aa, abaa, …] [all strings that contain at least

one instance of aa].

Another Example of ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : |w| is even}

ε bb aabb

a aba bbaa

b aab aabaa

aa bbb

baa

The equivalence classes of ≈L:

6/12/2012

15

Yet Another Example of ≈≈≈≈L

Σ = {a, b}

L = aab*a

ε bb aabaa

a aba aabbba

b aab aabbaa

aa baa

aabb

The equivalence classes of ≈L:

When More Than One Class Contains

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

ε aa aabb

a bb aabaa

b aba aabbba

aab aabbaa

baa

The equivalence classes of ≈L:

6/12/2012

16

When More Than One Class Contains

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

[1] [ε]

[2] [a, aba, ababa, …]

[3] [b, ab, bab, abab, …]

[4] [aa, abaa, ababb…]

Does ≈≈≈≈L Always Have a Finite
Number of Equivalence Classes?

Σ = {a, b}

L = {anbn, n ≥ 0}

ε aa aaaa

a aba aaaaa

b aaa

The equivalence classes of ≈L:

6/12/2012

17

The Best We Can Do

Theorem: Let L be a regular language and let M be a

DFSM that accepts L. The number of states in M is

greater than or equal to the number of equivalence

classes of ≈L.

Proof: Suppose that the number of states in M were

less than the number of equivalence classes of ≈L.

Then, by the pigeonhole principle, there must be at

least one state q that contains strings from at least two

equivalence classes of ≈L. But then M’s future behavior

on those strings will be identical, which is not consistent

with the fact that they are in different equivalence

classes of ≈L.

The Best Is Unique

Theorem: Let L be a regular language over some alphabet Σ.
Then there is a DFSM M that accepts L and that has precisely
n states where n is the number of equivalence classes of ≈L.
Any other FSM that accepts L must either have more states
than M or it must be equivalent to M except for state names.

Proof: (by construction)
M = (K, Σ, δ, s, A), where:
● K contains n states, one for each equivalence class of ≈L.
● s = [ε], the equivalence class of ε under ≈L.
● A = {[x] : x ∈ L}.
● δ([x], a) = [xa]. In other words, if M is in the state that

contains some string x, then, after reading the next
symbol, a, it will be in the state that contains xa.

6/12/2012

18

Proof, Continued

• K is finite. Since L is regular, it is accepted by some
DFSM M′. M′ has some finite number of states m. By
Theorem 5.4, n ≤ m. So K is finite.

• δ is a function. In other words, it is defined for all (state,
input) pairs and it produces, for each of them, a unique
value. The construction defines a value of δ for all
(state, input) pairs. The fact that the construction
guarantees a unique such value follows from the
definition of ≈L.

We must show that:

Proof, Continued

• L = L(M). To prove this, we must first show
that ∀s, t (([ε], st) |-M* ([s], t)). We do this by induction
on |s|.

If |s| = 0 then we have ([ε], ε) |-M* ([ε], t), which is true
since M simply makes zero moves.

6/12/2012

19

Proof, Continued

Assume that the claim is true if |s| = k. Then we consider what
happens when |s| = k+1. |s| ≥ 1, so we can let s = yc where y ∈

Σ* and c ∈ Σ. We have:

/* M reads the first k characters:
([ε], yct) |-M* ([y], ct) (induction hypothesis,

since |y| = k).

/* M reads one more character:
([y], ct) |-M* ([yc], t) (definition of δM).

/* Combining those two, after M has read k+1 characters:
([ε], yct) |-M* ([yc], t) (transitivity of |-M*).
([ε], st) |-M* ([s], t) (definition of s as yc).

Proof, Continued

So we have :

[*] ∀s, t (([ε], st) |-M* ([s], t)).

Let t be ε. Let s be any string in Σ*. By [*]:

([ε], s) |-M* ([s], ε).

So M will accept s iff [s] ∈ A, which, by the way in which A

was constructed, it will be if the strings in [s] are in L. So

M accepts precisely those strings that are in M.

6/12/2012

20

Proof, Continued

• There exists no smaller machine M# that also accepts L.
This follows directly from Theorem 5.4, which says that
the number of equivalence classes of ≈L imposes a
lower bound on the number of states in any DFSM that
accepts L.

• There is no different machine M# that also has n states
and that accepts L.

Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

1: [ε] ε

2: [a, ba, aba, baba, ababa, ...] (b∪ε)(ab)*a

3: [b, ab, bab, abab, ...] (a∪ε)(ba)*b

4: [bb, aa, bba, bbb, ...] the rest

● Equivalence classes become states

● Start state is [ε]

● Accepting states are all equivalence classes in L

● δ([x], a) = [xa]

6/12/2012

21

Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence
classes of ≈L is finite.

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is

finite: If L is regular, then there exists some FSM M that
accepts L. M has some finite number of states m. The
cardinality of ≈L ≤ m. So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L

regular: If the cardinality of ≈L is finite, then the construction
that was described in the proof of the previous theorem will
build an FSM that accepts L. So L must be regular.

6/12/2012

22

So Where Do We Stand?

1. We know that for any regular language L there exists a minimal
accepting machine ML.

2. We know that |K| of ML equals the number of equivalence
classes of ≈L.

3. We know how to construct ML from ≈L.

4. We know that ML is unique up to the naming of its states.

But is this good enough?

Consider:

• Begin with M and collapse redundant states, getting rid
of one at a time until the resulting machine is minimal.

• Begin by overclustering the states of L into just two
groups, accepting and nonaccepting. Then iteratively
split those groups apart until all the distinctions that L
requires have been made.

Minimizing an Existing DFSM
(Without Knowing ≈≈≈≈L)

Two approaches:

6/12/2012

23

The Overclustering Approach

We need a definition for “equivalent”, i.e., mergeable

states.

Define q ≡ p iff for all strings w ∈ Σ*, either w drives M to

an accepting state from both q and p or it drives M to

a rejecting state from both q and p.

An Example

Σ = {a, b} L = {w ∈ Σ* : |w| is even}

q2 ≡ q3

6/12/2012

24

Constructing ≡≡≡≡ as the Limit of a Sequence of
Approximating Equivalence Relations ≡≡≡≡n

(Where n is the length of the input strings that have

been considered so far)

Consider input strings, starting with ε, and increasing in

length by 1 at each iteration. Start by way

overgrouping states. Then split them apart as it

becomes apparent (with longer and longer strings)

that their behavior is not identical.

Constructing ≡≡≡≡n

• p ≡0 q iff they behave equivalently when they read ε. In
other words, if they are both accepting or both rejecting
states.

• p ≡1 q iff they behave equivalently when they read any
string of length 1, i.e., if any single character sends both
of them to an accepting state or both of them to a
rejecting state. Note that this is equivalent to saying that
any single character sends them to states that are ≡0 to
each other.

• p ≡2 q iff they behave equivalently when they read any
string of length 2, which they will do if, when they read
the first character they land in states that are ≡1 to each
other. By the definition of ≡1, they will then yield the
same outcome when they read the single remaining
character.

• And so forth.

6/12/2012

25

Constructing ≡≡≡≡, Continued

More precisely, ∀p,q ∈ K and any n ≥ 1, q ≡n p

iff:

1. q ≡n-1 p, and

2. ∀a ∈ Σ (δ(p, a) ≡n-1 δ(q, a))

MinDFSM
MinDFSM(M: DFSM) =

1. classes := {A, K-A};
2. Repeat until no changes are made

2.1. newclasses := ∅;
2.2. For each equivalence class e in classes, if e contains

more than one state do
For each state q in e do

For each character c in Σ do
Determine which element of classes q

goes to if c is read
If there are any two states p and q that need to be

split, split them. Create as many new
equivalence classes as are necessary. Insert

those classes into newclasses.
If there are no states whose behavior differs, no

splitting is necessary. Insert e into
newclasses.

2.3. classes := newclasses;

3. Return M* = (classes, Σ, δ, [sM], {[q: the elements of q are in AM]}),
where δM* is constructed as follows:

if δM(q, c) = p, then δM*([q], c) = [p]

6/12/2012

26

An Example

Σ = {a, b}

≡0 =

≡1 =

≡2 =

The Result

6/12/2012

27

Summary

● Given any regular language L, there exists a

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm

minDFSM that constructs a minimal DFSM

that also accepts L(M).

Canonical Forms

A canonical form for some set of objects C assigns

exactly one representation to each class of “equivalent”

objects in C.

Further, each such representation is distinct, so two

objects in C share the same representation iff they are

“equivalent” in the sense for which we define the form.

6/12/2012

28

A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) =

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).

3. Create a unique assignment of names to the

states of M*.

4. Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1)

=

buildFSMcanonicalform(M2)

iff L(M1) = L(M2).

Correctness Proof of ndfsmtodfsm

To prove:

From any NDFSM M = (K, Σ, ∆, s, A), ndfsmtodfsm

constructs a DFSM M'= (K', Σ, δ', s', A'), which is

equivalent to M.

K' ⊆ P(K) (a.k.a. 2K)

s' = eps(s)

A' = {Q ⊆ K : Q ∩ A ≠ ∅}

δ'(Q, a) = ∪ {eps(p): p ∈ K and

(q, a, p)∈∆ for some q∈Q}

6/12/2012

29

Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM

M', which is:

(1) Deterministic: By the definition in step 3 of δ', we

are guaranteed that δ' is defined for all reachable

elements of K' and all possible input characters.

Further, step 3 inserts a single value into δ' for each

state-input pair, so M' is deterministic.

(2) Equivalent to M: We constructed δ' so that M'

mimics an “all paths” simulation of M. We must now

prove that that simulation returns the same result that

M would.

A Useful Lemma

Lemma: Let w be any string in Σ*, let p and q be any states
in K, and let P be any state in K'. Then:

(q, w) |-M* (p, ε) iff ((eps(q), w) |-M' * (P, ε) and p ∈ P) .

INFORMAL RESTATEMENT OF LEMMA: In other words,
if the original NDFSM M starts in state q and, after reading
the string w, can land in state p (along at least one of its
paths), then the new DFSM M' must behave as follows:

When started in the state that corresponds to the set of
states the original machine M could get to from q without
consuming any input, M' reads the string w and lands in a
state P (which is a set of M's states) that contains p.

Furthermore, because of the only- if part of the lemma, M'
(starting from q and reading w) must end up in a "set state"
that contains only states that M could get to from q after
reading w and following any available epsilon-transitions.

6/12/2012

30

A Useful Lemma
Lemma: Let w be any string in Σ*, let p and q be any

states in K, and let P be any state in K'. Then:

(q, w) |-M* (p, ε) iff ((eps(q), w) |-M' * (P, ε) and p ∈ P)

.

It turns out that we will only need this lemma for the case

where q = s, but the more general form is easier to prove

by induction. This is common in induction proofs.

Proof: We must show that δ' has been defined so that the

individual steps of M', when taken together, do the right

thing for an input string w of any length. Since the

definitions describe one step at a time, we will prove the

lemma by induction on |w|.

Recall: NDFSM M = (K, Σ, ∆, s, A), DFSM M'= (K', Σ, δ', s', A'),

Base Case: |w| = 0, so w = ε

• if part: Prove:

(eps(q), w) |-M' * (P, ε) ∧ p ∈ P →→→→ (q, w) |-M*(p, ε)

Since w = ε and M' (being deterministic) contains no ε-
transitions, M' makes no moves. So M' must end in the
same state it started in, namely eps(q). So P = eps(q).

Now, since P contains p, then p ∈ eps(q). But, given the
definition of eps, this means that, in the original NDFSM
M, p is reachable from q just by following ε-transitions.
So (q, w) |-M*(p, ε) .

6/12/2012

31

Base Case

• only if part: We need to show:

[(q, w) |-M* (p, ε)] →→→→ [(eps(q), w) |-M'* (P, ε) and p ∈ P]

If |w| = 0 and the original machine M goes from q to p with
only w as input, it must go from q to p following just ε-
transitions. So p ∈ eps(q).

M' starts in eps(q). Since M' contains no ε-transitions, it
will make no moves at all if its input is ε. So it will halt in
exactly the same state it started in, namely eps(q). So P =
eps(q) and thus contains p.

So M' halts in a state that includes p.

Induction Step

Let w have length k + 1. Then w = zx where z∈Σ* has

length k, and x∈Σ.

Induction assumption. The lemma is true for Z.

So we show that, assuming that M and M' behave

identically for the first k characters, they behave

identically for the last character also and thus for the

entire string of length k + 1.

The Definition of δ′δ′δ′δ′

δ'(Q, c) = ∪{eps(p) : ∃q∈Q ((q, c, p) ∈ ∆)}

6/12/2012

32

What We Need to Prove

• The computation of the NDFSM M:

(q, w) |-M* (p, ε)

and

• The computation of the DFSM M':

(eps(q), w) |-M'* (P, ε) and p ∈ P

The relationship between:

What We Need to Prove

• The computation of the NDFSM M:

(q, zx) |-M* (p, ε)

and

• The computation of the DFSM M':

(eps(q), zx) |-M'* (P, ε) and p ∈ P

Rewriting w as zx:

6/12/2012

33

What We Need to Prove

• The computation of the NDFSM M:

(q, zx) |-M* (si, x) |-M (p, ε)

and

• The computation of the DFSM M':

(eps(q), zx) |-M'* (Q, x) |-M' (P, ε) and p ∈ P

In other words, after processing z, M will be in some set of

states S, whose elements we write as si. M' will be in

some "set" state that we call Q. Again, well split the

proof into two parts:

Breaking w into two pieces:

If Part

We must prove:

[(eps(q), zx) |-M'* (Q, x) |-M' (P, ε) and p ∈ P] →

[(q, zx) |-M* (si, x) |-M (p, ε)].

If, after reading z, M' is in state Q, we know, from the

induction hypothesis, that the original machine M, after

reading z, must be in some set of states S and that Q is

precisely that set.

If we have that M', starting in Q and reading x lands in

P, then, from the definition of δ', P contains precisely the

states that M could land in after starting in any state in S

and reading x. Thus if p ∈ P, p must be a state that M

could land in if started in si on reading x.

6/12/2012

34

Only If Part

We must prove:

[(q, zx) |-M* (si, x) |-M (p, ε)] →

[(eps(q), zx) |-M'* (Q, x) |-M' (P, ε) and p ∈ P].

By the induction hypothesis, if M, after processing z, can

reach some set of states S, then Q (the state M' is in after

processing z) must contain precisely all the states in S.

So, from Q, reading x, M' must be in some set state P that

contains precisely the states that M can reach starting in

any of the states in S, reading x, and then following all ε

transitions. So, after consuming zx, M', when started in

eps(q), must end up in a state P that contains all and only

the states p that M, when started in q, could end up in.

Back to the Theorem

• The original machine M, when started in its start
state, can consume w and end up in an accepting
state.

• (eps(s), w) |-M'* (Q, ε) for some Q containing some a
∈ A. In the statement of the lemma, let q equal s
and p = a for some a ∈ A. Then M', when started in
its start state, eps(s), will consume w and end in a
state that contains a. But if M' does that, then it has
ended up in one of its accepting states (by the
definition of A' in step 5 of the algorithm). So M'
accepts w (by the definition of what it means for a
machine to accept a string).

If w ∈ L(M) then:

6/12/2012

35

Back to the Theorem

• The original machine M, when started in its start

state, will not be able to end up in an accepting state

after reading w.

• If (eps(s), w) |-M'* (Q, ε), then Q contains no state

a ∈ A. This follows directly from the lemma.

The two cases, taken together, show that M' accepts

exactly the same strings that M accepts.

If w ∉ L(M) (i.e. the original NDFSM does not accept w):

