## Some of the early slides are repeats of Day 4; I do not duplicate those notes here.

## Slide 3: Recap: Definition of a DFSM

Don't spend much time on these recap slides, except the yields slides.
These slides are mainly here for reference as we do other things.

## Slide 85: Recap: Accepting and Rejecting

Sketch of proof.
Base case: If $w$ is $\varepsilon$, it halts in 0 steps.
Assume true for strings of length n and show for strings of length $\mathrm{n}+1$.
Let $w \in \Sigma^{*}, w \neq \varepsilon|w|=n+1$ for some $n \in \mathbb{N}$.
Then $w$ is ax for some $a \in \Sigma, x \in \Sigma^{*},|x|=n$.
Let $q^{\prime}$ be $\delta(q, a)$. Then ( $\left.q, w\right) \mid-m\left(q^{\prime}, x\right)$
By induction, from configuration ( $q^{\prime}, x$ ), $M$ halts in $n$ steps.
So, starting from the original configuration, M halts in $\mathrm{n}+1$ steps.
ASK: IF $M$ is a DFSA, is membership in $L(M)$ decidable?

## Slide 10: Example

Sometimes instead of cluttering up a transition diagram by showing a dead state and lots of transitions into it, we will simply not show a transition out of some state on a given input symbol.

This is a "shorthand" for a dead state.

Redraw the diagram!

Slide 15: (Hidden) Solution
Note that I fixed this slide; the author's had the dead state as an accepting state.
If a new version of PowerPoint comes out, I should make sure that my "coverup" still works

Slide 20: Vowels in Alphabetical Order
I fixed an author's error by covering up an a with a $u$, then grouping.

Slide 33: Pattern Matching: Multiple Keywords
Note that states $q 4$ and $q 8$ could be combined.

