

Exam 1: Session 12 (Dec 16)

- Resources allowed:
- A double-sided 8.5×11 sheet of paper with whatever you want on it.
- No books or electronic devices.
- I'll tell you by Tuesday how far the exam will cover.
- HW 5 will be due the following Tuesday..

Recap: Definition of a DFSM

$M=(K, \Sigma, \delta, s, A)$, where:

The D is for
Deterministic

K is a finite set of states
Σ is a (finite) alphabet
$s \in K$ is the initial state (a.k.a. start state)
$A \subseteq K$ is the set of accepting states
$\delta:(K \times \Sigma) \rightarrow K$ is the transition function

Sometimes we will put an M subscript on K, Σ, δ, s, or A (for example, s_{M}), to indicate that this component is part of machine M.

Recap: Configurations of a DFSM

A configuration of a DFSM M is an element of:

$$
K \times \Sigma^{*}
$$

It captures the two things that affect M s future behavior:

- its current state
- the remaining input to be read.

The initial configuration of a DFSM M, on input w, is:
$\left(s_{M}, w\right)$

Recap: The "Yields" Relations

The yields-in-one-step relation: $\left.\right|_{M}$:
$\left.(q, w)\right|_{M}\left(q^{\prime}, w\right)$ iff

- $w=a w^{\prime}$ for some symbol $a \in \Sigma$, and
- $\delta(q, a)=q^{\prime} \begin{aligned} & \text { In a context where there is only one } \\ & \text { machine under consideration, we may } \\ & \text { sometimes omit the M and simply write }-\end{aligned}$

The yields-in-zero-or-more-steps relation: $\mid-{ }_{-}{ }^{*}$
$\left.\right|_{M}{ }^{*}$ is the reflexive, transitive closure of $\mid-m$.
The yields-in-exactly-n-steps relation: |- \boldsymbol{m}^{n}
"Yields in exactly n steps", where $n \geq 0$

Recap: Computations Using FSMs

A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε), for some state $q \in K_{M}$,
- $\forall \mathrm{i} \in\{0,1, \ldots, \mathrm{n}-1\}\left(C_{\mathrm{i}} \mid-{ }_{M} C_{\mathrm{i}+1}\right)$

Recap: An Example Computation

An FSM M that accepts decimal representations of odd integers:

On input 235, the configurations are:
$\left(q_{0}, 235\right)$

,
Thus $\left(q_{0}, 235\right) \vdash_{M}{ }^{*}\left(q_{1}, \varepsilon\right)$

Recap: Accepting and Rejecting

A DFSM M accepts a string w iff:
$\left.\left(s_{M}, w\right)\right|_{M}{ }^{*}(q, \varepsilon)$, for some $q \in A_{M}$
A DFSM M rejects a string w iff:
$\left.\left(s_{M}, w\right)\right|^{-}{ }^{*}(q, \varepsilon)$, for some $q \notin A_{M}$
The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

What is $L(M)$ for the machine on the in-class quiz?
Theorem: Every DFSM M, in configuration (q, w), halts in exactly $|w|$ steps.

Q5,6,7

Regular Languages

Definition:
A language L is regular iff
$L=L(M)$ for some DFSM M.

Example

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

every a is immediately followed by a b\}.

δ can also be represented as a transition table:

state \downarrow input \rightarrow	a	b
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{0}
q_{2}	q_{2}	q_{2}

q_{2} is a dead state.

Parity Checking

$L=\left\{w \in\{0,1\}^{*}: w\right.$ has odd parity $\}$.
l.e. an odd number of 1 's.

Even a Regions

$L=\left\{w \in\{a, b\}^{*}\right.$: every a region in w has even length $\}$.

Note that by "a region", we mean a maximal sequence of consecutive as.

This would be a good example for practice later

Checking Consecutive Characters

$L=\left\{w \in\{a, b\}^{*}:\right.$
no two consecutive characters are the same\}.

The Language of Floating Point Numbers is Regular

> Example strings:
> $+3 \cdot 0,3 \cdot 0,0.3 \mathrm{E} 1,0.3 \mathrm{E}+1,-0 \cdot 3 \mathrm{E}+1,-3 \mathrm{E} 8$

The language is accepted by the DFSM:

We will now take a very quick look at a few DFSM examples

Programming FSMs

Cluster strings that share a "future".
Let $L=\left\{w \in\{a, b\}^{*}: w\right.$ contains an even number of a's and an odd number of b's\}

Vowels in Alphabetical Order

$L=\left\{w \in\{a-z\}^{*}:\right.$ all five vowels, a, e, i, o, and u, occur in w in alphabetical order\}.

Programming FSMs

$L=\left\{w \in\{a, b\}^{*}: w\right.$ does not contain the substring aab $\}$.
Start with a machine for $\neg L$:

How must it be changed?

A Building Security System

$L=\{$ event sequences such that the alarm should sound\}

The Missing Letter Language

Let $\Sigma=\{a, b, c, d\}$.
Let $L_{\text {Missing }}=$
$\left\{w\right.$: there is a symbol $a_{i} \in \Sigma$ not appearing in $\left.w\right\}$.
Try to make a DFSM for $L_{\text {Missing }}$:

The Missing Letter Language

Let $\Sigma=\{a, b, c, d\}$.
Let $L_{\text {Missing }}=$
$\left\{w\right.$: there is a symbol $a_{i} \in \Sigma$ not appearing in $\left.w\right\}$.
Try to make a DFSM for $L_{\text {Missing }}$:

Do this on your own if you want extra practice. For now, think about why it is hard.

Definition of an NDFSM

$M=(K, \Sigma, \Delta, s, A)$, where:
K is a finite set of states
Σ is an alphabet
$s \in K$ is the initial state
$A \subseteq K$ is the set of accepting states, and
Δ is the transition relation. It is a finite subset of

$$
(K \times(\Sigma \cup\{\varepsilon\})) \times K
$$

Another way to present it: $\Delta:(K \times(\Sigma \cup\{\varepsilon\})) \rightarrow 2^{K}$

Accepting by an NDFSM

M accepts a string w iff there exists some path along which w drives M to some element of A.

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Sources of Nondeterminism

Optional Substrings

$L=\left\{w \in\{a, b\}^{*}: w\right.$ is made up of an optional a followed by a followed by zero or more b's\}.

Multiple Sublanguages

$L=\left\{w \in\{a, b\}^{*}: w=a b a\right.$ or $|w|$ is even $\}$.

The Missing Letter Language

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. Let $L_{\text {Missing }}=\{w$: there is a symbol $a_{i} \in \Sigma$ that does not appear in $\left.w\right\}$

Pattern Matching

$L=\left\{w \in\{a, b, c\}^{*}: \exists x, y \in\{a, b, c\}^{*}(w=x\right.$ abcabb $\left.y)\right\}$.
A DFSM:

An NDFSM:

Pattern Matching: Multiple Keywords

$$
L=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*}: \exists x, y \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right.
$$

$$
((w=x \text { abbaa } y) \vee(w=x \text { baba } y))\}
$$

