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MA/CSSE 474

Theory of Computation

Decision Problems

Languages,  Machines,

Computation

A decision problem is simply a problem for which the 

answer is yes or no (True or False).  A decision 

procedure answers a decision problem.

Examples:

•  Given an integer n, does n have a pair of consecutive       

integers as factors?

•  The language recognition problem:  Given a 

language L and a string w, is w in L?

Our focus in this course

Decision Problems
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The Power of Encoding

Anything can be encoded as a string.  

For example, on a computer  everything is 

encoded as a string of bits.

<X> is the string encoding of X.

<X, Y> is the string encoding of the pair X, Y.

Problems that don’t look like decision problems 

about strings and languages can be recast into 

new problems that do look like that.

Web Pattern Matching

Pattern matching on the web:

• Problem: Given a search string w and a web 

document d, do they “match”?  In other words, 

should a search engine, on input w, consider 

returning d?

• The language to be decided:

{<w, d> : d is a candidate match for the string w}
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The Halting Problem

Does a program always halt?

• Problem: Given a program p, written in some 

some standard programming language L, is p

guaranteed to halt, no matter what input it is 

given?

• The language to be decided: 

HPALL = {p∈L : p halts on all inputs}

Primality Testing

• Problem: Given a nonnegative integer n, is it 

prime?

• An instance of the problem: Is 9 prime?

• To encode the problem we need a way to encode 

each instance: We encode each nonnegative 

integer as a binary string.

• The language to be decided: 

PRIMES = {w : w is the binary encoding of 

a prime integer}.
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• Problem:  Given an undirected graph G, is it connected?  

• Instance of the problem: 

1           2            3

4           5

• Encoding of the problem: Let V be a set of binary numbers, one for 

each vertex in G.  Then we construct 〈G〉 as follows:

• Write |V| as a binary number,

• Write a list of edges,  

Each pair of binary numbers represents one edge.

• Separate all such binary numbers by “/”.

1/10/1/100/10/101/10/11

• The language to be decided: CONNECTED = {w ∈ {0, 1, /}* : w = 

n1/n2/…ni, where each ni is a binary string and w encodes a    
connected graph, as described above}.

Graph Connectivity

Casting multiplication as decision:

• Problem: Given two nonnegative integers, 

compute their product.

• Encoding of the problem: Transform computation into 

verification.

• The language to be decided, INTEGERPROD

{w of the form:
<integer1>x<integer2>=<integer3>, where: 

<integern> is any well formed integer, and

integer3 = integer1 ∗ integer2}

12x9=108 ∈ INTEGERPROD

12=12 ∉ INTEGERPROD

12x8=108 ∉ INTEGERPROD

Turning Problems Into Decision 
Problems
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Casting sorting as decision:

• Problem: Given a list of integers, sort it.

• Encoding of the problem: Transform the sorting 

problem into one of examining a pair of lists. 

• The language to be decided:

L = {w1 # w2: ∃n ≥1

(w1 is of the form <int1, int2, … intn>, 

w2 is of the form <int1, int2, … intn>, and

w2 contains the same objects as w1 and 

w2 is sorted)}

Examples:
<1,5,3,9,6>#<1,3,5,6,9> ∈ L

<1,5,3,9,6>#<1,2,3,4,5,6,7> ∉ L

Turning Problems Into Decision 
Problems

By equivalent problems,  we mean that either problem can 

be reduced to the other.

What does it mean to reduce Problem A to Problem B?
If we have a machine to solve B, we can use it to build a 

machine solve A, using only the B and other functions that 

can be constructed using machines of equal or lesser power 

than the B machine.

Note: Reduction does not always preserve efficiency!

The Traditional Problems and their 
Language Formulations are Equivalent
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Consider the multiplication example: INTEGERPROD

{w of the form:
<integer1>x<integer2>=<integer3>, where: 

<integern> is any well formed integer, and

integer3 = integer1 ∗ integer2 }

Given a multiplication machine, we can build the 

language recognition machine:

Given the language recognition machine, we can build a 

multiplication machine:

An Example

Q1-2

Languages and Machines

Quick 

overview 

today.

The details 

will comprise 

most of the 

rest of the 

course.
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Finite State Machines

An FSM to accept a*b*:

An FSM to accept  AnBn = {anbn : n ≥ 0}

Q3

Pushdown Automata

A PDA to accept AnBn = {anbn : n ≥ 0}

Example:  aaabb

Stack:



12/5/2011

8

Other Examples

Bal, the language of balanced parentheses.

PalSpecial: {wcwR : w∈{a,b}*}

PalEven: {wwR : w∈{a,b}*}

Q4

Trying Another PDA

A PDA to accept strings of the form:

AnBnCn = {anbncn : n ≥ 0}
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Turing Machines

A read/write head and a tape that is infinite in both directions.

Based on current state and symbol it sees on the tape, it writes 
a symbol (possibly the same one) to the tape and moves one 
position left or right.

If it reaches an accepting state or rejecting state, it halts.

The (finite) input string is originally written consecutively on a 
portion of the tape; the rest is initially blank, but the read/write 
head can write things on any square.  

At any given time, only a finite part of the tape is non-blank.

The head starts at the square to the left of the first input 
symbol.

Turing Machines

A Turing Machine to accept AnBnCn:

Q5
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Decidable and  Semidecidable 

Languages
• A language L is decidable iff there exists a Turing 

machine M that halts on all inputs, accepts all strings 
that are in L, and rejects all strings that are not in L. 
– In other words, M can always say yes or no, as 

appropriate. 

• A language L is semidecidable iff there exists a Turing 
machine M that accepts all strings that are in L and 
fails to accept every string that is not in L. 
– Given a string that is not in L, M may reject or it may loop 

forever. 
– In other words, M can always recognize a string in L and 

say yes, 
– but it may not know when it should give up looking for a 

solution and say no.

• A language L is undecidable iff it is not semidecidable.

Q6

Rule of Least Power: “Use the least powerful 
language suitable for expressing information, 
constraints or programs on the World-wide web.”

--Tim Berners-Lee and Noah Mendelsohn(2006)

Languages and Machines
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Some "Canonical" Languages

• AnBn = {anbn : n >= 0}

• Bal = { strings of balanced parentheses}

• WW = {ww : w ∈ Σ*} 

• PalEven {wwR : w ∈ Σ*} 

• AnBnCn = {anbncn : n >= 0}

• HPALL = {<T> : T is a Turing machine that 

eventually halts, no matter what input it is given}

• PRIMES = {w : w is the binary encoding of a 

prime integer}

Nondeteminism

• A nondeterministic machine in a given 
state, looking at a given symbol (and with 
a given symbol on top of the stack if it is a 
PDA), has a choice of multiple possible 
moves that it can make.

• If there is a move that leads toward 
acceptance, it makes that move.
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• Given a string in {a, b}*, is it in 

PalEven = {wwR : w ∈{a,b}*}}?

• PDA

• Choice: Continue pushing, or start popping?

• This language can be accepted by a 

nondeterministic PDA but not by any 

deterministic one.

Nondeterminism

Q7

Nondeterministic value-added?

• Ability to recognize additional languages?

– FSM:   no

– PDA :  yes

– TM:      no

• Ease of designing a machine for a 
particular language

– Yes in all cases

We will prove 
these later
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1. choose (action 1;;

action 2;;

…

action n )

2. choose(x from S: P(x))

Nondeterministic Computation
First case:  Each action will return True, 
return False, or run forever.

If any of the actions returns TRUE, choose 
returns true.
If all of the actions return FALSE, choose 
returns FALSE.
If none of the actions return TRUE, and 
some do not halt, choose does not halt.

Second case:  S may be finite, or infinite with 
a generator (enumerator).

If P returns true on some x, so does Choose
If it can be determined that P(x) is false for all x in P, 
return False.
Otherwise, fail to halt.


