474 Notes on Day 4 slides:

Slide 12: The Power of Encoding
What are some common ways of encoding integers:
Decimal
Binary
Hex
Unary
Slide 13: Web Pattern Matching
Obviously we would need to define the criteria for candidacy more precisely in order to make this a reasonable language to study.
Slide 20: Turning Problems into Decision Problems
First string is in the language; other two are not.
Slide 22: An Example
Given a machine that does integer multiplication how can we build a machine to recognize the multiplication language?
Suppose we have a machine $\mathrm{M}(\mathrm{x}, \mathrm{y})$ that multiplies two integers.
Given a string in the form <int1>*<int2>=<int3>
X = convertTolnt(<int1>)
$\mathrm{Y}=$ convertToInt(<int2>)
Z = convertToInt(<int3>)
If $z=M(x, y)$ then accept. Else reject
The other way around?
Suppose we have a program P that checks whether strings like the one above are in INTEGERPROD.
This program computes the product of two integers x and y.
Enumerate the strings that are encodings of natural numbers.
For each one, <z>, feed <x>*<y>=<z> to P.
If P accepts, return z . Otherwise, keep going.
P will eventually accept

