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MA/CSSE 474

Theory of Computation

Decision Problems

Quiz questions referenced here 

are on the Day 3 quiz

Total Orders

A total order R ⊆ A × A is a partial 

order that has the additional property 

that:

∀x, y ∈ A ((x, y) ∈ R ∨ (y, x) ∈ R). 

Example:  ≤ on the rational numbers

If R is a total order defined on a set A, 

then the pair (A, R) is a totally 

ordered set.  
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Infinite Descending Chain

• A partially ordered set (S, <) has an infinite 
descending chain if there is an infinite set 
of elements x0, x1, x2, … ∈S such that 
∀i∈ℕ(xi+1< xi)

• Example: 
In the rational numbers with <,

1/2 > 1/3 > 1/4 > 1/5 > 1/6 > …
is an infinite descending chain

Well-Founded and Well-Ordered Sets

Given a partially ordered set (A, R), an infinite 

descending chain is a totally ordered, with respect to R, 

subset B of A that has no minimal element.  

If (A, R) contains no infinite descending chains then it is 

called a well-founded set.   

•Used for halting proofs.

If (A, R) is a well-founded set and R is a total order, then 

(A, R) is called a well-ordered set.  

•Used in induction proofs.

•The positive integers are well-ordered

•The positive rational numbers are not well-ordered   

(with respect to normal <) Q9
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Mathematical Induction

1. A clear statement of the assertion P.

2. A proof that that P holds for some base case b, the 

smallest value with which we are concerned. 

3. A proof that, for all integers n ≥ b, if P(n) then it is 

also true that P(n+1).  We’ll call the claim P(n) the 

induction hypothesis. 

Because the integers ≥ b are well-ordered:

The principle of mathematical induction:

If: P(b) is true for some integer base case b, and

For all integers n ≥ b, P(n) → P(n+1)

Then: For all integers n ≥ b, P(n)

An induction proof has three parts:

Sum of First n Positive Odd Integers

The sum of the first n odd positive integers is n2.  We 

first check for plausibility: 

(n = 1) 1                   =  1  = 12.

(n = 2) 1 + 3             =  4  = 22.

(n = 3) 1 + 3 + 5       =  9  = 32.

(n = 4) 1 + 3 + 5 + 7 = 16 = 42, and so forth.

The claim appears to be true, so we should prove it.  
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Sum of First n Positive Odd  Integers

Let Oddi = 2(i – 1) + 1 denote the ith odd positive integer.  Then we 
can rewrite the claim as:
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The proof of the claim is by induction on n:
Base case: take 1 as the base case.  1 = 12.
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= n2+ Oddn+1.        (Induction hypothesis.)
= n2 + 2n + 1.            (Oddn+1 = 2(n+1–1) + 1 = 2n + 1.)
= (n + 1)2. 

Note that we start with one side of the equation we are trying to prove, 
and transform to get the other side.  We do not treat it like solving an 
equation, where we transform both sides in the same way.

For reference; 
we will not do 
this in class

Strong induction

• To prove that predicate P(n) is true for all 
n≥b:

– Show that P(b) is true [and perhaps P(b+1) *] 

– Show that for all j>b, if P(k) is true for all k with 

b≤ k<j, then P(j) is true. In symbols:

∀j >b ((∀k (b≤k<j → P(k)) → P(j))

* We may have to show it directly for more than 

one or two values, but there should always be 
a finite number of base cases.
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Fibonacci Running Time

• From Weiss, Data Structures and Problem Solving with 
Java, Section 7.3.4

• Consider this function to recursively calculate Fibonacci 
numbers:  
F0=0        F1=1          Fn = Fn-1+Fn-2 if n≥2.
– def fib(n):

if n <= 1:
return n

return fib(n-1) + fib(n-2)

• Let CN be the number of calls to fib during the 
computation of fib(N).

• It’s easy to see that C0=C1=1 , 
and if N ≥ 2, CN = CN-1 + CN-2 + 1.

• Prove that for N ≥ 3, CN = FN+2 + FN-1 -1.

Q10

Languages and Problems:

The Big Picture

Chapter 3
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A decision problem is simply a problem for which the 

answer is yes or no (True or False).  A decision 

procedure answers a decision problem.

Examples:

•  Given an integer n, does n have a pair of consecutive       

integers as factors?

•  The language recognition problem:  Given a 

language L and a string w, is w in L?

Our focus in this course

Decision Problems

The Power of Encoding

Anything can be encoded as a string.  

For example, on a computer  everything is 

encoded as a string of bits.

<X> is the string encoding of X.

<X, Y> is the string encoding of the pair X, Y.

Problems that don’t look like decision problems 

about strings and languages can be recast into 

new problems that do look like that.
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Web Pattern Matching

Pattern matching on the web:

• Problem: Given a search string w and a web 

document d, do they “match”?  In other words, 

should a search engine, on input w, consider 

returning d?

• The language to be decided: 

{<w, d> : d is a candidate match for the string w}

The Halting Problem

Does a program always halt?

• Problem: Given a program p, written in some 

some standard programming language L, is p

guaranteed to halt, no matter what input it is 

given?

• The language to be decided: 

HPALL = {p∈L : p halts on all inputs}
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Primality Testing

• Problem: Given a nonnegative integer n, is it 

prime?

• An instance of the problem: Is 9 prime?

• To encode the problem we need a way to encode 

each instance: We encode each nonnegative 

integer as a binary string.

• The language to be decided: 

PRIMES = {w : w is the binary encoding of 

a prime integer}.

• Problem:  Given an undirected graph G, is it connected?  

• Instance of the problem: 

1           2            3

4           5

• Encoding of the problem: Let V be a set of binary numbers, one for 

each vertex in G.  Then we construct 〈G〉 as follows:

• Write |V| as a binary number,

• Write a list of edges,  

Each pair of binary numbers represents one edge.

• Separate all such binary numbers by “/”.

1/10/1/100/10/101/10/11

• The language to be decided: CONNECTED = {w ∈ {0, 1, /}* : w = 

n1/n2/…ni, where each ni is a binary string and w encodes a    
connected graph, as described above}.

Graph Connectivity
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• Problem: Given a protein fragment f and a complete      

protein molecule p, could f be a fragment from p?

• Encoding of the problem: Represent each protein 

molecule or fragment as a sequence of amino acid    

residues.  Assign a letter to each of the 20 possible 

amino acids.  So a protein fragment might be 
represented as AGHTYWDNR.

• The language to be decided: 

{<f, p> : f could be a fragment from p}.

Protein Sequence Allignment

Casting multiplication as decision:

• Problem: Given two nonnegative integers, 

compute their product.

• Encoding of the problem: Transform computing into 

verification.

• The language to be decided:

L = {w of the form:
<integer1>x<integer2>=<integer3>, where: 

<integern> is any well formed integer, and

integer3 = integer1 ∗ integer2}

12x9=108 ∈ L

12=12 ∉ L

12x8=108 ∉ L

Turning Problems Into Decision 

Problems



12/2/2011

10

Casting sorting as decision:

• Problem: Given a list of integers, sort it.

• Encoding of the problem: Transform the sorting 

problem into one of examining a pair of lists. 

• The language to be decided:

L = {w1 # w2: ∃n ≥1

(w1 is of the form <int1, int2, … intn>, 

w2 is of the form <int1, int2, … intn>, and

w2 contains the same objects as w1 and 

w2 is sorted)}

Examples:
<1,5,3,9,6>#<1,3,5,6,9> ∈ L

<1,5,3,9,6>#<1,2,3,4,5,6,7> ∉ L

Turning Problems Into Decision 
Problems

Casting database querying as decision:

• Problem: Given a database and a query, execute the query.

• Encoding of the problem: Transform the query execution problem 

into evaluating a reply for correctness.

• The language to be decided:

L = {d # q # a:

d is an encoding of a database,
q is a string representing a query, and
a is the correct result of applying q to d}

Example:
(name, age, phone), (John, 23, 567-1234)

(Mary, 24, 234-9876)#(select name age=23)#

(John)   ∈ L

Turning Problems Into Decision 

Problems
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By equivalent we mean that either problem can be 

reduced to the other.

If we have a machine to solve one, we can use it to build 

a machine to do the other, using only the starting 

machine and other functions that can be built using 

machines of equal or lesser power.

Reduction does not always preserve efficiency!

The Traditional Problems and their 
Language Formulations are Equivalent

Consider the multiplication example:

L = {w of the form:
<integer1>x<integer2>=<integer3>, where: 

<integern> is any well formed integer, and

integer3 = integer1 ∗ integer2}

Given a multiplication machine, we can build the 

language recognition machine:

Given the language recognition machine, we can build a 

multiplication machine:

An Example
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Student Solution Presentations
(as many as we have time for)

• A4

• Consider the English sentence, “If some bakery sells 
stale bread and some hotel sells flat soda, then the 
only thing everyone likes is tea.”  This sentence has at 
least two meanings.  Write two (logically different) first-
order-logic sentences that correspond to meanings 
that could be assigned to this sentence.  

• Use the following predicates: 
P(x) is True iff x is a person; 
B(x) is True iff x is a bakery; 
SB(x) is True iff x sells stale bread; 
H(x) is True iff x is a hotel; SS(x) is True iff x sells flat 
soda; 
L(x, y) is True iff x likes y; and 
T(x) is True iff x is tea.

Student Solution Presentations
(as many as we have time for)

• A11(c)

• Using the definition of ≡p (equivalence 
modulo p) that is given in Example A.4, let Rp

be a binary relation on ℕ, defined as follows, 
for any p ≥ 1:

Rp = {(a, b): a ≡p b}
So, for example, R3 contains (0, 0), (0, 3), (6, 
9), (1, 4), etc., but does not contain (0, 1), (3, 
4), etc.

• Is Rp a partial order?  A total order?  Prove 
your answer.
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Student Solution Presentations
(as many as we have time for)

• 2.5a

• Consider the language L of all strings drawn 
from the alphabet {a, b} with at least two 
different substrings of length 2.  
– Describe L by writing a sentence of the form L = 

{w ∈ Σ* : P(w)}, where Σ is a set of symbols and P
is a first-order logic formula.  

– You may use the function |s| to return the length 
of s.  

– You may use all the standard relational symbols 
(e.g., =, ≠, <, etc.), plus the predicate 

• Substr(s, t), which is True iff s is a substring of t.

Student Solution Presentations
(as many as we have time for)

• 2.8

• For each of the following statements, state 
whether it is True or False.  Prove your 
answer.

• (a) ∀L1, L2 (L1 = L2 iff L1* = L2*).

• (c)Every infinite language is the 
complement of a finite language.

• (g) ∀L1, L2 ((L1 ∪ L2)* = L1* ∪ L2*). 

• (l) ∀L (∅ ∪ L+ = L*). 


