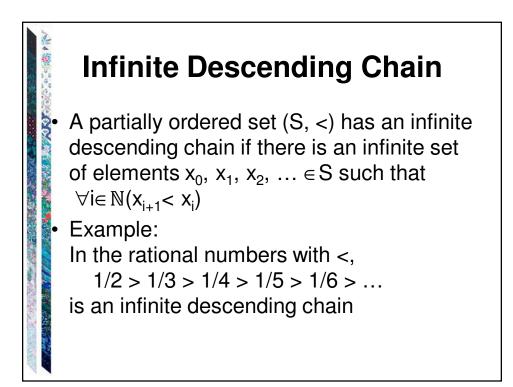
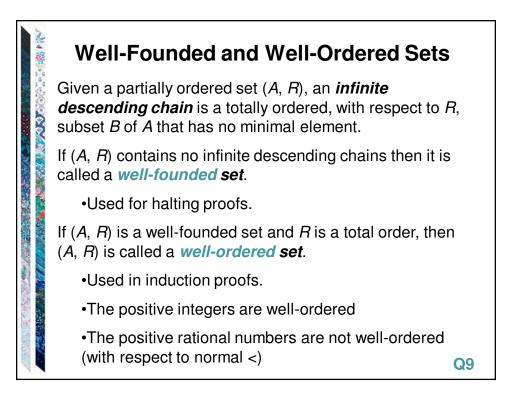
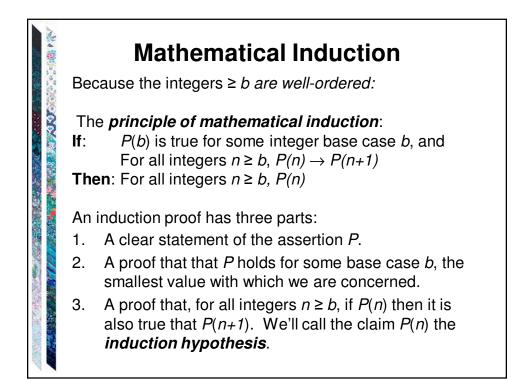
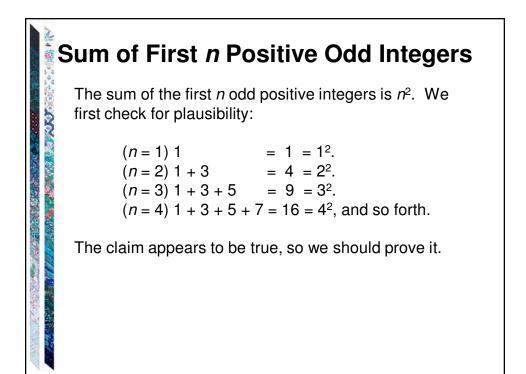


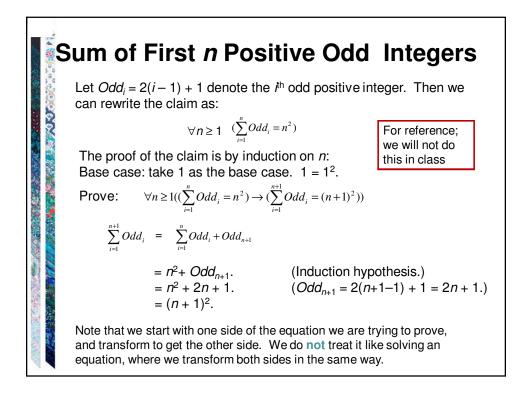
ALA 1855	Total Orders	
0.0000 V	A total order $R \subseteq A \times A$ is a partial order that has the additional property that:	
	$\forall x, y \in A ((x, y) \in R \lor (y, x) \in R).$	
	Example: \leq on the rational numbers	
	If R is a total order defined on a set A , then the pair (A , R) is a totally 3 ordered set .	
		Q7-8

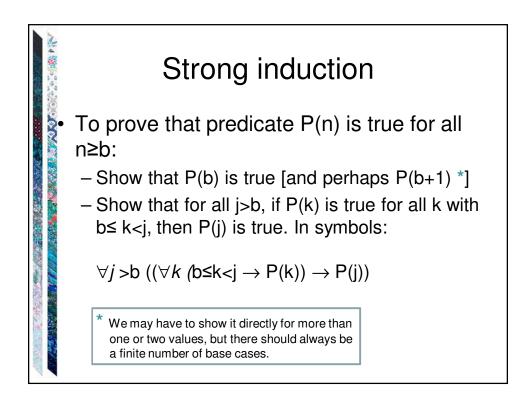


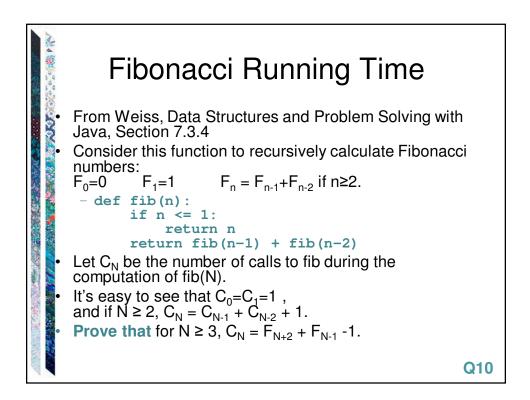


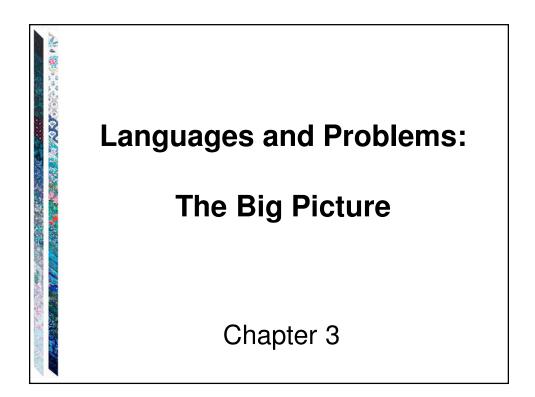


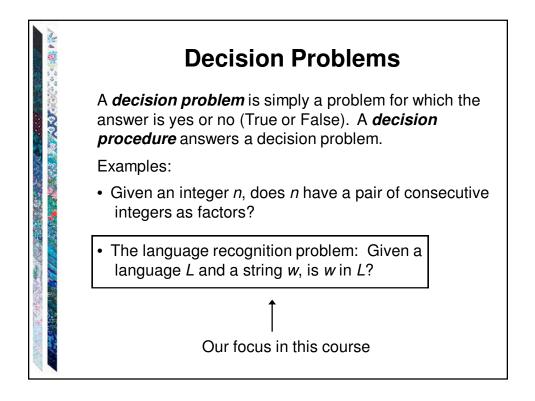


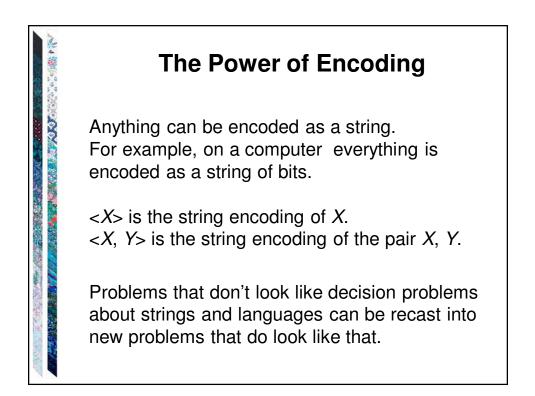


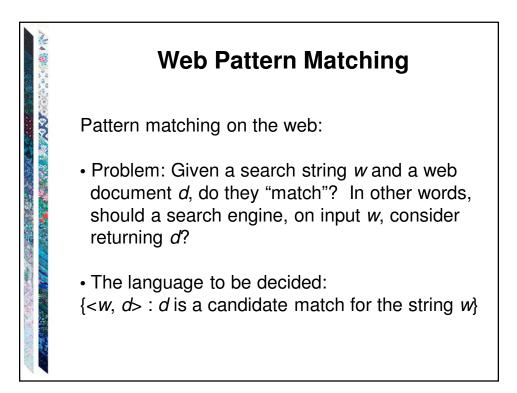


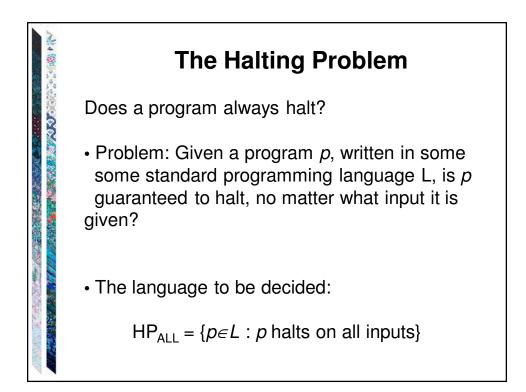


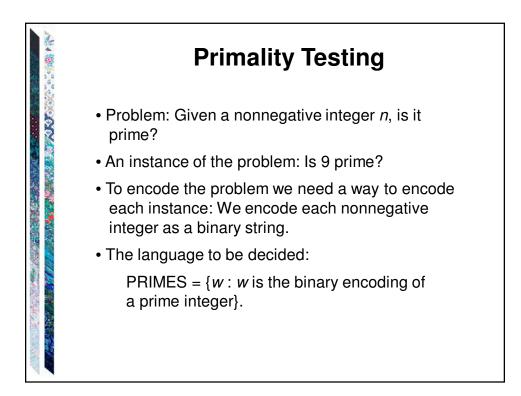


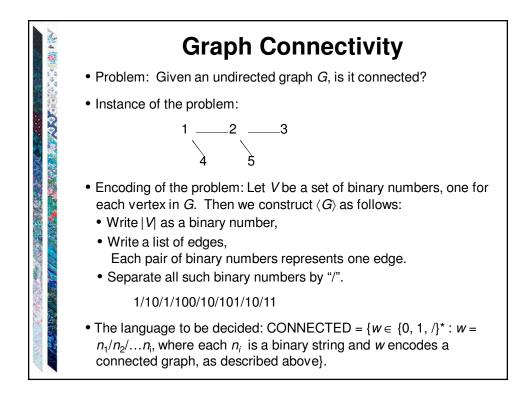


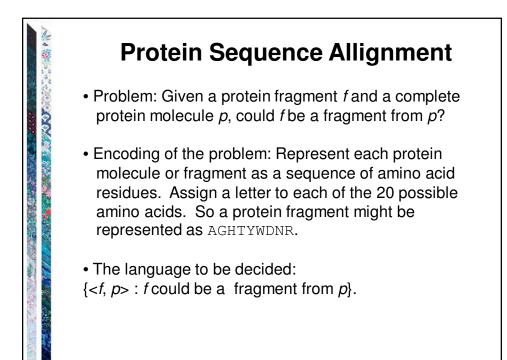


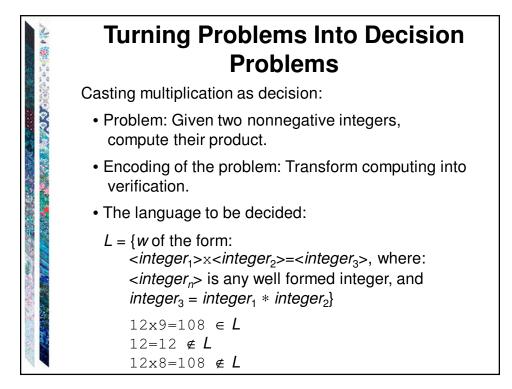


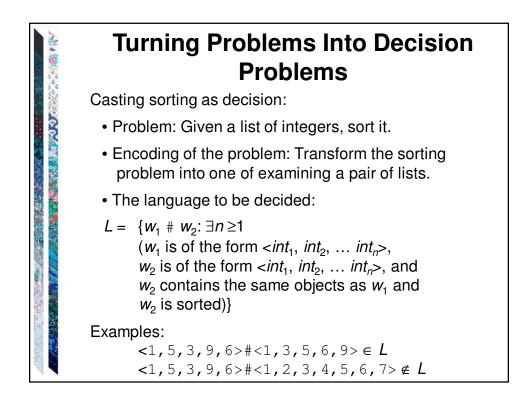


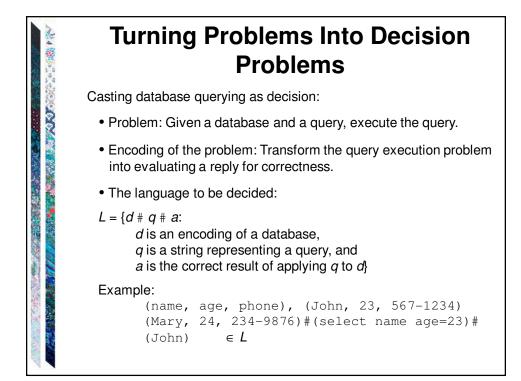












The Traditional Problems and their Language Formulations are Equivalent

By equivalent we mean that either problem can be *reduced to* the other.

If we have a machine to solve one, we can use it to build a machine to do the other, using only the starting machine and other functions that can be built using machines of equal or lesser power.

Reduction does not always preserve efficiency!

